Analysing WLAN 802.11n MIMO with AirPcap N April 1st, 2008

Rolf Leutert

Network Consultant | Leutert NetServices

SHARKFEST '08
Foothill College
March 31 - April 2, 2008

Session Agenda

- Design Goals for 802.11n
- IEEE 802.11n physical layer improvements
- IEEE 802.11n MAC layer improvements
- Per-Packet Information Header
- Analysing 'Bad BAR' and 'Deadlock' problem
- Bandwidth Measurement
- Backwards compatibility to a/b/g
- Future of 802.11n

Design Goals for 802.11n

- ♣ IEEE 802.11n is a proposed amendment to the IEEE 802.11-2007 wireless networking standard
- Significantly improve PHY layer transmission rate over previous standards, such as 802.11a and 802.11b/g with 'High Throughput' (HT) options
- Increasing the MAC layer transfer rate to achieve a minimum of 100 Mbps data throughput
- Maintain backward compatibility with existing IEEE WLAN legacy solutions (802.11a/b/g)

How the Goals are achieved

- A combination of technical functions at PHY and MAC layers are added to the existing 802.11 standard:
- ✓ Increasing the physical transfer rate with new modulation scheme and timing up to 600Mbps
- New multi-streaming modulation technique using MIMO (multiple input, multiple output antennas)
- ✓ Joining two adjacent channels with Channel bonding
- ✓ Support for frame aggregation A-MPDU & A-MSDU
- New Block Acknowledgments

PHY layer improvements

Modified OFDM

The number of OFDM data sub-carriers is increased from 48 to 52 which improves the maximum throughput from 54 to 58.5 Mbps

Forward Error Correction

FEC is a system of error control whereby the sender adds redundant data to allow the receiver to detect and correct errors. 3/4 coding rate is improved with 5/6 boosting the link rate from 58.5 to 65 Mbps

PHY layer improvements (cont.)

Shorter Guard Interval (GI)

The GI between OFDM symbols is reduced from 800ns to 400ns and increases throughput from 65 to 72.2 Mbps

Channel Bonding

Doubling channel bandwidth from 20 to 40 MHz slightly more than doubles rate from 72.2 to 150 Mbps

Spatial multiplexing

Support of up to four spatial streams (MIMO) increases throughput up to 4 times 150 to 600 Mbps

Channel Bonding (Channel 6 & 10)

Channel Bonding (configuration)

802.11n supports bundling of two 20 MHz channels

- Select a control channel # and the channel offset
- Both channels must fit inside allowed frequency range
- A-band does not allow to select channel # manually

Configuration on Cisco AP1250

Configuration on AirPcap N

Channel Allocation 5GHz Band

Frequency Band	Channel ID	FCC (GHz)	ETSI (GHz)	MKK (GHz)
	2.4			£ 470
	34	 	 	5.170
	36	5.180	5.180	
Lower	38			5.190
Band	40	5.200	5.200	
UNII-1	42			5.210
01111-1	44	5.220	5.220	
	46			5.230
	48	5.240	5.240	
Middle	52	5.260*	5.260	5.260
Band	56	5.280*	5.280	5.280
UNII-2	60	5.300*	5.300	5.300
UNII-Z	64	5.320*	5.320	5.320
	400	F F0.0+	F F00	F F00
	100	5.500*	5.500	5.500
	104	5.520*	5.520	5.520
	108	5.540*	5.540	5.540
High	112	5.560*	5.560	5.560
Band	116	5.580*	5.580	5.580
UNII-2	120	5.600*	5.600	5.600
extended	124	5.620*	5.620	5.620
CACHIGG	128	5.640*	5.640	5.640
	132	5.660*	5.660	5.660
	136	5.680*	5.680	5.680
	140	5.700*	5.700	5.700
	149	5.745		
Upper	153	5.745		
Band	157	5.785		
UNII-3/ISM	161	5.805		
ISM	165	5.825		

Available non-overlapping channels							
FCC (USA and Canada)	24						
ETSI (Europe)	19						
MKK (Japan)	19						

Transmit Power Control (TPC) required for							
FCC (USA and Canada)	Band 2,2e						
ETSI (Europe)	Band 1,2,2e						
MKK (Japan)	Band 1,2,2e						

Dynamic Frequency Selection (DFS) required for							
FCC* (USA and Canada)	Band 2,2e						
ETSI (Europe)	Band 1,2,2e						
MKK (Japan)	Band 1,2,2e						

Some channels only allowed for inhouse use

*New stricter FCC DFS2 rules valid off July 20, 2007

Multi-Streaming Modulation

Modulation Coding Scheme (MCS)

802.11n introduces a new Modulation Coding Scheme

- 802.11 b/g adapts to channel conditions by selecting the highest of 12 possible rates from 1 to 54 Mbps
- The 802.11n standard will allow some 77 possible MCS' some compulsory, some optional
- MCS selects, based on RF channel conditions, the best combination of 8 data rates, bonded channels, multiple spatial streams, different guard intervals and modulation types

MCS Configuration

1 spatial stream

2 spatial streams

Screenshot Cisco AP1250

SHARKFEST '08 | Foothill College | March 31 - April 2, 2008 © Leutert NetServices

MCS Rate Chart

20 MHz (Channel				40 MHz Channel									
MCS Ra	te Chart			ream MIMO)				eams MO)				ream MIMO)		2 Streams (MIMO)				
000.44	MCS Rate	0	1	2	3	8	9	10	11									
802.11n 2.4GHz	Mbps	6.5	13	19.5	26	13	26	39	52									
GI = 800 ns		39	52	58.5	65	78	104	117	130	n.a. n.a.					d.			
GI - 000113	MCS Rate	4	5	6	7	12	13	14	15									
202.44	MCS Rate	0	1	2	3	8	9	10	11	0	1	2	3	8	9	10	11	
802.11n	Mhns	6.5	13	19.5	26	13	26	39	52	13.5	27	40.5	54	27	54	81	108	
5GHz		39	52	58.5	65	78	104	117	130	81	108	121.5	135	162	216	243	270	
GI = 800 ns	MCS Rate	4	5	6	7	12	13	14	15	4	5	6	7	12	13	14	15	
2222700	MCS Rate	0	1	2	3	8	9	10	11	0	1	2	3	8	9	10	11	
802.11n	Mbns	7.2	14.4	21.7	28.9	14.4	28.9	43.3	57.8	15	30	45	60	30	60	90	120	
5GHz GI = 400 ns		43.3	57.8	65	72.2	86.7	115.6	130	144.4	90	120	135	150	180	240	270	300	
GI - 400 NS	MCS Rate	4	5	6	7	12	13	14	15	4	5	6	7	12	13	14	15	

MAC layer improvements

Frame Aggregation Mechanisms

- Aggregate-MAC Service Data Unit (A-MSDU) wraps multiple Ethernet frames in a 802.11 frame up to 8KB
- Aggregate-MAC Protocol Data Unit (A-MPDU) allows bursting 802.11 frames up to 64KB
- A-MPDU is performed in the software whereas A-MSDU is performed in the hardware

Block Acknowledgement

Block ACK effectively eliminates the need to initiate a new transfer for every MPDU

MSDU Aggregation

- Multiple Ethernet frames for a common destination are wrapped in a single 802.11 frame
- More efficient than A-MPDU as only one radio- and 802.11 MAC header is applied
- Whole frame must be retransmitted if no acknowledge

Aggregated MAC Service Data Units

A-MSDU Analysis

MPDU Aggregation

- Multiple Ethernet frames for a common destination are translated to 802.11 format and sent as burst
- Elements of an A-MPDUs burst can be acknowledged individually with one single Block-Acknowledge
- Only not-acknowledged A-MPDUs are retransmitted

A-MPDU Analysis

Block-ACK Mechanism

- Rather than sending an individual acknowledge following each data frame, 802.11n introduces the technique of confirming a burst of up to 64 frames with a single Block ACK (BA) frame
- The Block ACK even contains a bitmap to selectively acknowledge individual frames of a burst (comparable to selective acknowledges of TCP)
- The use of combined acknowledges can be requested by sending a Block ACK Request (BAR)

Block-ACK Mechanism (cont.)

A-MPDUs
Sequence # 65 66 67 68

125 126 127 128

Block ACK

12/ 128 Bitmap (64 bits)

Start Sequence # 65 + 1111 1111 1111 1011= **129**

retransmitted frame

Sequence # 126 129 130 131 188 189 190 191 Bitmap (64 bits)

Start Sequence # 128 + 1111 1111 1111 1111= 192

Block-ACK Bitmap Analysis

Block-ACK Bitmap Analysis (cont.)

Frame #	Type	Sequence #	Bitmap (64 bits)
4579	Block ACK	Start Sequence # 1381+ 64 = 1	445 FF FF FF FF
4580	MPDU #1	1445	
4581	MPDU #2	1446 1 F	
4582	MPDU #3	1447 1 ["	
4583	MPDU #4	1448 1)	
4584	MPDU #5	1449 lost frame 0	
4585	MPDU #6	1450 1 E	
4586	MPDU #7	1451 1 🔓	
4587	MPDU #8	1452	
4588	Block ACK	Start Sequence # 1389 + 64 = 1	453 FF FF FF EF
4589	MPDU #1	1449 retransmitted frame	
4590	MPDU #2	1453	
4591	MPDU #3	1454	
4592	MPDU #4	1455	
4593	MPDU #5	1456	
4594	MPDU #6	1457	
4595	MPDU #7	1458	
4596	MPDU #8	1459	
4597	MPDU #9	1460	
4598	MPDU #10	1461	
4599	Block ACK	Start Sequence # 1398 + 64 = 1	462 FF FF FF FF

Trace file: D05_AMPDU.pcap

SHARKFEST '08 | Foothill College | March 31 - April 2, 2008

© Leutert NetServices

Block-ACK negotiation/activation

- The Block-ACK options are negotiated and confirmed with 'Action' frames defined in 802.11e (WLAN QoS)
- Action frames are used to negotiate other options too
 - Category Code 0 = Spectrum management
 - Category Code 1 = QoS options
 - Category Code 2 = DLS (Direct Link Setup)
 - Category Code 3 = Block Ack
- The use of combined acknowledges can be requested by sending a Block ACK Request (BAR)

Block-ACK negotiation/activation (cont.)

New HT Capabilities in Beacon Frame

Per-Packet Information Header (PPI)

New PPI header replaces the radiotap header used in 802.11a/b/g with additional 802.11n radio information

PPI adds a pseudoheader to each packet and provides Meta data about RF signal strength, timing, options etc.

References

Radiotap manual: http://netbsd.gw.com/cgi-bin/man-cgi?ieee80211_radiotap+9+NetBSD-current
PPI manual: http://www.cacetech.com/documents/PPI Header format 1.0.1.pdf

Per-Packet Information Header (cont.)

Per-Packet Information Header (cont.)

```
■ 802.11n MAC+PHY
   Field type: 802.11n MAC+PHY Extensions (4)
   Field length: 48
 ■ MAC flags: 0x00000016
    .... .... .... .... .... .... .... = Greenfield flag: False
    .... .... ... ... ... ... ... .1. = HT20/HT40 flag: HT40
    .... .... .... (SGI) flag: True
    .... .... .... .... O... = Duplicate RX flag: False
    .... .... = Aggregate flag: True
    .... = More aggregates flag: False
    .... .... .... .... .... .... .0.. .... = A-MPDU Delimiter CRC error after this frame flag: False
    0... = Debug Flag (more desc): False
   AMPDU-ID: 0x000131cd
   Num-Delimiters: 0
  MCS: 15
  Number of spatial streams: 2
   RSSI combined: 62
  Antenna O control RSSI: 53
   Antenna 1 control RSSI: 58
  Antenna 2 control RSSI: 58
   Antenna 3 control RSSI: 255 [invalid]
   Antenna O extension RSSI: 55
```


AirPcap N and Wireshark

AirPcap N and Wireshark is the perfect combination for:

- Learning about how things are functioning
- Finding out what 802.11n options and capabilities are offered and negotiated in the air
- Verifying vendor specifications (like throughput etc.)
- Investigating compatibility issues between vendors
- Training technical people and much more...

Frame Aggregation (configuration examples)

Cisco's 802.11abgn AP1250

By disabling A-MPDU with the 'no' command, the traffic associated with that priority level uses A-MSDU transmission

Command line interface:

ap1250(config)#interface dot11Radio 1 ap1250(config-if)#no ampdu transmit priority 0

Buffalo's 802.11abgn PC-Card

Analysing 'Bad BAR' problem

Analysing 'Bad BAR' problem (cont.)

- Buffalo WLI-CB-AG300N is using strange SRC MAC address when sending BAR
- Problem occurs only when A-MPDU is activated
- Problem seems to be related to retransmissions
- Possibly a driver issue as A-MPDU is done in software
- A-MSDU works fine

Analysing 'Deadlock' problem

Problem starts at frame # 22116 which is not acknowledged by receiver

Analysing 'Deadlock' problem (cont.)

Analysing 'Deadlock' problem (cont.)

- Access point retransmits frame 128 times up to frame # 22246 (value of Max. Data Retries counter)
- As the mobile station does not acknowledge, access point sends 'Deauthentication' in frame # 22247 and removes station from association list
- As mobile station does not acknowledge again, access point retransmits in frames # 22248 to 22250
- Mobile station does not acknowledge, assumes to be still associated with access point and keeps sending frames (# 22298, 22315 etc.) → Deadlock situation

Bandwidth Measurement

UDP bandwidth measurement with **IPerf** indicates throughput of 126Mbps

Backwards compatibility to a/b/g

Present situation

Mbps	Coding	Description		
1 2	Barker Code Barker Code	802.11 DSSS (Clause 15) with ,Long Preamble'		
5.5 11	CCK CCK	802.118 HR/DSSS (Cla with ,Short Pre	use 18)	
6 9 12 18 24 36 48 54	OFDM OFDM OFDM OFDM OFDM OFDM OFDM		802.11g ended Rate (ERP) w Frame Forr	

802.11a

= Complementary Code Keying

OFDM = Orthogonal Frequency Division Multiplexing

Backwards compatibility to a/b/g (cont.)

Present situation

802.11 DSSS with ,Long Preamble' Barker Code

802.11b HR/DSSS with ,Short Preamble' Barker / CCK

802.11g (ERP)
Extended Rate PHY
new Frame Format
OFDM

PLCP = Physical Layer Convergence Protocol
MPDU = MAC Layer Protocol Data Unit (decoded by Wireshark)

SHARKFEST '08 | Foothill College | March 31 - April 2, 2008 © Leutert NetServices

Backwards compatibility to a/b/g (cont.)

- 802.11n supports three compatibility modes
 - Legacy mode
 - Mixed mode
 - Greenfield mode

Legacy mode

802.11n to b/g compatibility with Clear-to-send to self

Backwards compatibility to a/b/g (cont.)

Mixed mode

802.11n to a/g compatibility with Legacy header

Greenfield mode

No backwards compatibility to a/b/g

Future of 802.11n

- Standard ratification not expected before June 2009
- The Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) holds OFDM patent (#5487069) and may delay ratification of 802.11n
- Interoperability remains a question mark for pre-N products
- New products supporting technical features like:
 - Up to four spatial streams
 - Transmit Beamforming
 - Direct Link Setup ... and many more

Thank you for your attention

