
#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

John Doe

SharkFest ’18 Europe

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Packet Corporation

To send or not to send?..

How TCP Congestion Control
algorithms work

Vladimir Gerasimov

Packettrain.NET

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

About me

• In IT since 2005
• Working for Unitop (integration, distribution)

• Where to find me:
• Twitter: @Packet_vlad

• Q&A: https://ask.wireshark.org

• Blog: packettrain.net

• Social group https://vk.com/packettrain (Russian)

https://ask.wireshark.org/
https://vk.com/packettrain

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

PCAPs

http://files.packettrain.net:8001/SF18/

Login = password = sf18eu

(caution: size!!)

http://files.packettrain.net:8001/SF18/

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

The beginning..

Oct 1986

The first (but not the last)
occurrence.

LBL UC Berkeley

400 yards (365m) distance
Tremendous 32kbps line speed

Throughput suddenly dropped
to…

400 bps!

Protocol flaw?..

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Let’s capture!

What was on the wire?

The sender (4.2 BSD) floods the link with

tons of unnecessary retransmissions.

* because it sends on own full rate and have

inaccurate RTO timer

* some chunks were retransmitted 5+ times!

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Congestion collapse

This is called “congestion collapse” – when
goodput decreases by huge factor – up to 1000x!

[Fact: it was predicted by Nagle in 1984 before it occured in real
life]

- Bad news: it NEVER disappears without
countermeasures.

- So a sender has to slow down its rate … or we
just add more buffer to router?

Max link speed

We want this

We have this…

Sending speed

R
e
c
e
iv

in
g
 s

p
e
e
d

“Cliff”

“Knee”

(congestion onset)

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Large buffers?

• Let’s never drop a packet!

• But… buffers could be large, but not endless.

• Good for absorbing bursts, but don’t help if long-term incoming rate > outgoing rate.

• Actually make things worse (high latency, “bufferbloat”) – so we don’t want to have even to

have endless buffers if we could.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

TCP Self-clocking

Equilibrium state is good, but… if
you are the only one sender,
you’re already in it and there are
no other variables.

Looks unrealistic.

TCP ‘Self-clocking’

this is bottleneck

“Hand-weight

diagram”

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

But in real world…

What about this topology?

• Random data transfers

• Random link parameters

• Unknown path

TCP has to do it’s job in this environment.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

How to handle it?

Who must be responsible for handling?

Main decision made in [J88]:

“Smart endpoint, Dumb internet”

A sender (endpoint) has to slow down its transmission speed for some time

giving up self-interest for the interest of the whole system.

Modified sender should be capable to handle congestion without any

assistance from network nodes (though sometimes we’d like to have it… see later).

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Focus on sender

Fairness??

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Design by [J88]

Application Layer

Lower Layers

Congestion

Control

“brain”

TCP

cwnd size

feedback

control

ACK streamdata stream

Sender

*System-wide or per-socket setting are both possible

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

First solution by [J88]

1. Window-based control – hello, cwnd! –

W=min(cwnd, awnd), * where W –

number of unacknowledged packets; we also assume there

are no constraints in awnd in this session.

2. Feedback: packet loss as network congestion

indicator

3. Action profile: several stages for different

purpose each

4. RTO estimation enhancement

5. Fast retransmit mechanism

6. Focus on protection from collapse, not

efficiency etc.

Tahoe

93413595
Fast (a.k.a. “slow”)

start

Congestion

avoidance

When there are no

congestion indicators
When there ARE

congestion indicators

sstresh

timeout

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Tahoe – “slowfast kickstart”

Two tasks:

1. Establishing ACK clocking circuit (main one!)

2. “Fast and dirty” probe for bandwidth.

3. Determining initial sstresh value for further use.

Operation:

1. Start from initial window IW.

2. For every ACKed SMSS increase cwnd by one SMSS.

*Refer to Christian’s session for details

Initial window size nowadays usually equals 10 packets.

Refer to this link: https://iw.netray.io/stats.html

You can change it in Linux OS: #ip route change default via ip.address dev eth0 initcwnd 15

And in Windows OS: https://andydavies.me/blog/2011/11/21/increasing-the-tcp-initial-congestion-window-on-

windows-2008-server-r2/

Fun fact

https://iw.netray.io/stats.html
https://andydavies.me/blog/2011/11/21/increasing-the-tcp-initial-congestion-window-on-windows-2008-server-r2/

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Fun fact

Fun fact
As cwnd increases/decreases at least by SMSS value, its real graph never contains

inclined line segments, but only horizontal or vertical segments! So:

This is technically inaccurate! But totally OK to see

the whole picture

In reality it is like that

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Tahoe – Congestion avoidance
Core ideas:

1. Uses packet loss as a sign of congestion (feedback

type/input).

2. Uses AIMD approach as action profile

(control/output).

Has two modes (as any other algorithm):

1. With no observed signs of congestion.

2. With signs of congestion detected.

cwnd control rules:

cwnd = ቊ
𝑐𝑤𝑛𝑑 + 𝑎 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑐𝑤𝑛𝑑 ∗ 𝑏 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

For Tahoe, Reno 𝑎 =
1

𝑐𝑤𝑛𝑑
; 𝑏 = 0.5

*Refer to Christian’s session for more details

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Fun Facts

Tahoe was created using “bottom-up” approach: packet-

level rules first, macroscopic view (flow-level) second.

All subsequent CA algorithms (almost) were developed

using the opposite “top-down” approach: flow-level first

(this is what I want to achieve / address), packet-level

rules second (this is how I achieve that).

Packet level

Flow level

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Fun Facts

Have you ever though about: why AIMD? Not MIMD, AIAD, MIAD?

The answer is simple – its behavior is the best among others.

• MIAD → not stable, tends to overload a network.

• MIMD → less fairness

• AIAD → less fairness

• AIMD → tends to achieve efficiency + fairness. “React quickly to bad news, react slowly to

good news”.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Fun Facts

True or False?

• cwnd in Reno in Congestion Avoidance phase grows as straight line until packet loss is

detected.

True or False?

• All congestion control algorithms since Tahoe react to packet loss.

True or False?

• AIMD is an obsolete congestion control algorithm, nowadays we have better ones.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Fun Facts

True or False?

• cwnd in Reno (CA stage) grows as straight line until packet loss is detected – FALSE!

• True: In addition to “staircase-shape” although this line looks straight, it is not! The more cwnd

size is, the less slope of this line is (refer to “Convergence” slide to see it!). Chances are we’ll

reach packet loss too early to spot this.

True or False?

• All congestion control algorithms react to packet loss – FALSE!

• True: There many kinds of congestion control algorithms. Many of them indeed react to packet

loss, but many others use different feedback type – delay. So, transition to congestion avoidance

state could be done with no observed packet loss at all!

True or False?

• AIMD is an obsolete congestion control algorithm, nowadays we have better ones – Partially true!

• True: AIMD itself is not a congestion control algorithm, this is just an approach, pattern to behave

while in congestion control stage. Many modern algorithms also use AIMD approach, but it’s

being eventually switched from. Remember also: AIMD ≠ Reno

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Let’s rate it!
Well, how to decide which algorithm is better?

1. Efficiency (how full and steady is bottleneck utilization?)

2. Fairness (how we share bottleneck capacity?)

3. Convergence capability (how fast we approach

equilibrium state? How much we oscillate later?)

4. “Collateral damage” (buffer overflow event rate, self-

inflicted latency)

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Efficiency

Tahoe: bad Reno: better, but not ideal

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Fairness, convergence

Introducing: Phase graph

Shows efficiency, fairness and convergence.

Here: an example for two senders.

Optimal operating point

Oscillation on Efficiency line Oscillation on Fairness line

Under-utilizing zone

Over-utilizing zone

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Fairness (5 streams Reno)

But what about non-TCP protocols? See later..

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Convergence (1 stream)

Convergence speed

Oscillation

Under-utilizing zone

Over-utilizing zone
Available BW variation

RENO, RTT 100ms, 5 / 2.5 Mbit/s variable BW

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Convergence (1 stream)

RENO, RTT 100ms,

20 Mbit/s constant BW

Convergence time

4…5 seconds

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Convergence (1 stream)

RENO, RTT 100ms,

20 Mbit/s constant BW

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Complex challenges - 1

“Late news!”

• The sender will know about

“data leaving network rate” not

instantly, but only after ½ RTT.

• With packet drop at the

beginning of a path – it’s

getting worse.

• All this time the sender was

sending more and more

packets! Probably already

starting to slide down the cliff.

• It is getting worse when RTT

increases.

Dup ACKs flight time ≈ ½ RTT

“Gap” flight time ≤ ½ RTT

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Complex challenges - 2

Non-TCP-compatible flows, unresponsive flows (“fairness” and “ TCP friendliness”).

 Non-TCP-compatible is a flow which reacts to congestion indicators differently, not like TCP.

 Unresponsive is a flow which does not react to congestion indicators at all.

“Fairness” “TCP friendliness”

This is how TCP flows with the same CA

algorithm share bottleneck BW with each other.

A part of it is “RTT fairness”.

This is how non-TCP flows or TCP flows with

different CA algorithms share bottleneck

bandwidth.

2 possible solutions of this problem:

 TCP friendly rate control [RFC5348] concept – intentional rate limiting. * a part of many modern CA

algorithms.

 Call for help (“network assisted congestion control”).

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

TCP friendly rate control

Core idea: create an equation for T (sending rate, packets/RTT) with argument p (packet loss coefficient).

T=f(p)

For standard TCP (Reno) the equation is:

T=
1.2

𝑝

 Comparing actual T to “Reno –T” we can analyze relative fairness i.e. how aggressive protocol is vs.

standard TCP.

 Equations might be much more complex and take into account RTT, packet size.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Call for help!

Sometimes this isn’t enough so to ask network for help is a good idea!

 Routers know their own state (buffer load, link speed).

 Router can separate different kinds of flows.

Queue management

Passive (no) management Active (AQM)

Drop Signal

RED ECNWFQ FQ_CoDel

Tail drop

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Timeline

Tahoe [J88]

Reno

Vegas

NewReno BIC

Westwood

H-TCP

Hybla

Veno

1988 1999 2000 2010 2018

Scalable

Compound

Illinois

Fast

Cubic LEDBAT

Sprout

DCTCP

Remy

PRR

BBRx

BBR2

ABC

NV

BBR

Vivace

Nimbus

Indigo

YeAH

CDG

HSTCP

LP

FIT

XCP

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Reno (1998)

Core idea:

Tahoe + “Fast Recovery”.

What do we address: non-optimal behavior during loss recovery.

Operation:

• Send Fast retransmission and then:

• Set sstresh to cwnd/2, set cwnd to sstresh+3.

• Increase cwnd on 1 SMSS for every received next Dup ACK (“inflate phase”).

• Decrease cwnd to sstresh after receiving higher ACK (“deflate phase”).

Reason: we treat Dup ACKs stream as good sign (because packets somewhere are leaving our network!)

But we are stuck with “unacknowledged” window edge because of packet loss and can’t use capacity

becoming available. So let’s manipulate cwnd temporarily for this period and bring things back when it

ends.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

New Reno [RFC3782]

Core idea:

This is Reno + improved packet loss handling (only for multiple segments loss).

What do we address: loss burst.

Reason:

If multiple segments were lost, this can mess up our “inflate-deflate” strategy. We’ll deflate cwnd even if

we receive partial ACK (higher than the one in Dup ACK stream, but lower than packet we sent last before

loss). Therefore we’ll deflate cwnd too early!

Solution:

• Remember highest SEQ at the moment of packet loss detection (“Recovery point”).

• Do NOT deflate cwnd unless we receive an ACK for Recovery Point.

“The Default One”

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Test system

Eth0 bridge

Eth1

Ubuntu

18.04

virtual
NEWT

Control

Data

Mirror

Senders (physical)
Win 10 host

Software:

Control

Data

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Software 1 - NEWT

https://blog.mrpol.nl/2010/01/14/network-emulator-toolkit/

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Software 2 - flowgrind

 Allows separation between control and data

traffic.

 Large number of monitored values

(including current cwnd and sstresh size,

yeah!)

 Various traffic generation patterns.

 Individual TCP flow parameters setting.

 An ability to start flow from any PC running

flowgrind daemon.

 Possibility to redirect output table to text file

for parsing.

• Sensitive to incorrect arguments (often gets

stuck and reboot is needed).

• Problems with NAT’ed endpoints.

• No Windows version = no Compound TCP.

http://manpages.ubuntu.com/manpages/bionic/man1/flowgrind.1.html

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

NewReno on 40Mbps_100ms link

Time,s

0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

NewReno

Collateral damage: Almost 3 Buffer overflows / 797k Total Packets

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

NewReno

vs. Reno Friendliness

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

NewReno

5-stream convergence

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

NewReno

1% loss link behavior

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Further progress

Several problems were observed with Reno:

 NewReno was doing its job fine those days, but later with the raise of LFN and wireless it became clear

that…

× It can’t work efficiently on high-BDP links (because cwnd fixed additive increase algorithm is too slow

and ½ cwnd drop is too much). To utilize fully 1Gbps link with 100ms RTT it needs packet loss rate of 2x10-8 or

less. With 1% loss in this link it can’t go faster than 3Mbps. After packet loss event it needs 4000 RTT cycles to recover.

× It treats any packet loss as congestion indicator (not good for wireless networks).

× Often visits “cliff” area (this is common among all loss-based algorithms).

× Has 1-Bit congestion indicator = inevitable high oscillation level (this is common among all loss-based

algorithms).

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Further progress

How to make CC algorithm perform better? What to play with?

Remember feedback type and control? Let’s play with them!

Feedback type:

• Packet loss

• Delay

• Both of them

• ACKs inter-arrival timing

• Explicit signals (ECN)

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CA – feedback types

Packet

Loss

Delay

Packet

Loss +

Delay

Explicit

signals

(New)Reno Tahoe

CUBICBIC

Vegas

DCTCP

Compound

Veno

CDG

BBR

Illinois

H-TCP

Westwood

HSTCP

Hybla

Scalable

Fast TCP

Yeah TCP

LP

XCP
CLTCP

D3TCP

DCQCN

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CA – control (action) tweaking

What about control?

Step 1. Playing with AIMD factors.

cwnd = ቊ
𝑐𝑤𝑛𝑑 + 𝑎 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑐𝑤𝑛𝑑 ∗ 𝑏 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

Therefore changing angle and “drop height”.

We can play with 𝑏 factor

We can play with 𝑎 factor

𝑎

𝑏

Step 2. Adding variability.

Not constant 𝑎, but 𝑎=f(something)

Same with 𝑏.

Step 3. Shifting from AIMD to entirely different

model.

(The most recent approach).

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Scalable TCP – first “high BDP” try

Core ideas:

1. Aimed to deal with high BDP (first and simplest attempt to do it).

2. Uses packet loss as feedback (loss-based).

3. Uses MIMD approach as action profile (!).

cwnd control rules:

cwnd = ቊ
𝑐𝑤𝑛𝑑 + 0.01 ∗ 𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑐𝑤𝑛𝑑 ∗ 0,875 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

 Much more efficient than Reno in high BDP networks.

 Recovery time after packet loss (200ms RTT, 10Gbps link) – 2,7 sec.

× RTT fairness, TCP friendliness – terrible. Kills Reno easily.

“Psycho” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_scalable.c

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Scalable TCP

Time,s

0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Scalable TCP

Collateral damage: 23 Buffer overflows / 812k Total Packets

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Scalable vs NewReno

It’s unfair to say the least. 20Mbps, 100ms link.

Scalable

NewReno

BIF Scalable BIF NewReno

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Scalable

5-stream convergence

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Scalable

1% loss link behavior

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Highspeed TCP [RFC 3649]

Core ideas:

1. Aimed to deal with high BDP.

2. Uses packet loss as feedback (loss-based).

3. Uses AIMD approach as action profile.

4. “Let’s live with Reno on low-BDP, but take what it can’t take on high-BDP”

cwnd control rules:

cwnd = ቊ
𝑐𝑤𝑛𝑑 + 𝑎(𝑐𝑤𝑛𝑑)/𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑐𝑤𝑛𝑑 − 𝑏 𝑐𝑤𝑛𝑑 ∗ 𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

Formula:

Main point is: 𝑎, 𝑏 values depend on current cwnd size. If cwnd is less than

38*SMSS -> act as Reno (more bits in input!)

• Behaves less aggressive if a path is not LFN (for TCP friendliness).

× RTT fairness - still bad.

“Medicated psycho” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_highspeed.c

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Highspeed TCP

Time,s

0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Highspeed TCP

Collateral damage: 7 Buffer overflows / 790k Total Packets

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Highspeed TCP

vs. Reno Friendliness

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Highspeed TCP

5-stream convergence

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Highspeed TCP

1% loss link behavior

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CUBIC TCP

Core ideas:

1. Aimed to deal with high BDP.

2. Uses packet loss as feedback.

3. Uses cubic function as action profile (concave/convex parts).

4. Default for all Linux kernels > 2.6.18, implemented in Windows since Win10.

cwnd control rules:

In case of packet loss:

1. Set Wmax to cwnd;

2. Set cwnd, sstresh to (1 - β)*cwnd where default β=0.8

3. Grow cwnd using cubic function:

W(t) = C(t – K)3 + Wmax where:

Main point: approach last packet loss point slowly and carefully, but if there is no

more packet loss here – begin ramp up to use possibly freed up resources.

Additional techniques used: TCP friendly region, Fast convergence, Hybrid slow

start.

 Coexistence with Reno on non-LFN links – moderate

 RTT fairness - good

Last remembered value where packet

loss happened

Concave region

Convex region

“Ready-Steady-Go!” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_cubic.c

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CUBIC TCP

Time,s

0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CUBIC TCP

Collateral damage: 14 Buffer overflows / 790k Total Packets

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CUBIC TCP

vs. Reno Friendliness

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CUBIC TCP

5-stream convergence

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CUBIC TCP

1% loss link behavior

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

CUBIC Fun Fact

If you look at CUBIC source code you’ll spot some parameters can be tweaked!

These knobs can be found (for Ubuntu) at /sys/module/tcp_cubic/parameters

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Hybrid slow start

Time,s

0 5 10 15 20

0

200

400

600

800

1000

1200

cwnd
sstresh
RTT

Time,s

0 5 10 15 20

0

200

400

600

800

1000

1200

cwnd
sstresh
RTT

Problem: high aggressiveness during final slow

start phase.

Solution: estimate a point where to exit Slow

Start mode.

Methods:

• ACK train length measuring method.

• Inter-frame delay method.

Built-in in CUBIC algorithm.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

VEGAS TCP

Core ideas:

1. First try to build delay-based algorithm (1994).

2. Uses delay as feedback (purely delay-based).

3. Uses AIAD as action profile.

cwnd control rules:

1. Measure and constantly update min RTT (“BaseRTT”)

2. For every RTT compare Expected Throughput (cwnd / BaseRTT) with

Actual Throughput (cwnd / RTT)

3. Compute difference = (Expected - Actual)/BaseRTT

4. Look where in range it lies and act accordingly (1 per RTT cwnd update

frequency).

5. Switch to Reno if there are not enough RTT samples.

 Very smooth

 Doesn’t act on Cliff zone

 Induces small buffer load, keeps RTT small

× Gets beaten by any loss-based algorithm

× Doesn’t like small buffers

× Doesn’t like small RTTs

α/RTT
β/RTT

Increase Zone Decrease Zone

“Pacifist” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_vegas.c

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

VEGAS TCP

Time,s

0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

VEGAS TCP

When it’s alone – this is impressive! Collateral damage: almost unnoticeable / 767k Packets

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

NewReno vs. VEGAS TCP

When VEGAS is not alone – this is a shame..

VEGAS

NewReno

BIF Vegas

BIF NewReno

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

VEGAS TCP

5-stream convergence

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

VEGAS TCP

1% loss link behavior

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

ILLINOIS TCP

Core ideas:

1. Uses packet loss and delay as feedback.

2. Uses modified AIMD with delay-dependent variables as action

profile.

cwnd control rules:

cwnd = ቊ
𝑐𝑤𝑛𝑑 + α/𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

(1 − β) ∗ 𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

Measure min RTT and max RTT for each ACK. Track them.

Compute α:

• If average delay is at minimum (we are uncongested), then use large

alpha (10.0) to grow cwnd faster.

• If average delay is at maximum (getting congested) then use small

alpha (0.3)

Compute β:

• If delay is small (10% of max) then β = 1/8

• If delay is up to 80% of max then β = 1/2

• In between is a linear function

α

αmax

αmin

delaymin delaymax

“Careful” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_illinois.c

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

ILLINOIS TCP

Time,s

0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

ILLINOIS TCP

Collateral damage: 2 Buffer overflows / 815k Total Packets

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Illinois TCP

vs. Reno Friendliness

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Illinois TCP

5-stream convergence

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Illinois TCP

1% loss link behavior

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Compound TCP

Core ideas:

1. Uses combination of packet loss and delay as feedback.

2. Uses AIMD additionally altered by delay window as action profile.

3. Only for Windows OS since Vista.

cwnd control rules:

win = min (cwnd + dwnd, awnd)

Where: cwnd – as in Reno, dwnd – as in Vegas.

cwnd = ቊ
𝑐𝑤𝑛𝑑 + 1/(𝑐𝑤𝑛𝑑 + 𝑑𝑤𝑛𝑑) 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

(1 − β) ∗ 𝑐𝑤𝑛𝑑 𝑖𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

Main point: combine fairness of delay-based CA with aggressiveness of

loss-based CA.

 Coexistence with Reno on non-LFN links – good

 RTT fairness - good

“Windows”
cwnd

dwnd

cwnd + dwnd

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Compound TCP

Link: 20mpbs, 200ms RTT. Tested using ntttcp.exe, Win10 – Win10. Sorry, no cwnd graph..

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

WESTWOOD TCP

Core ideas:

1. Main idea: an attempt to distinguish between congestive and non-congestive losses.

2. Uses packet loss as feedback.

3. Uses modified AIMD as action profile.

4. Continuously estimates bandwidth (BWE, from incoming ACKs) and minimal RTT

(RTTnoLoad)

cwnd control rules:

• Calculates “transit capacity” : BWE×RTTnoLoad (represents how many packets can be in transit)

• Never drops cwnd below estimated transit capacity.

cwnd (on loss) = ቊ
𝑚𝑎𝑥(𝑐𝑤𝑛𝑑/2, 𝐵𝑊𝐸 × 𝑅𝑇𝑇𝑛𝑜𝐿𝑜𝑎𝑑) 𝑖𝑓 𝑐𝑤𝑛𝑑 > 𝐵𝑊𝐸 × 𝑅𝑇𝑇𝑛𝑜𝐿𝑜𝑎𝑑

𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒, 𝑖𝑓 𝑐𝑤𝑛𝑑 ≤ 𝐵𝑊𝐸 × 𝑅𝑇𝑇𝑛𝑜𝐿𝑜𝑎𝑑

• If no loss is observed – acts similarly to Reno.

“Wireless warrior” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_westwood.c

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

WESTWOOD TCP

Time,s

0 50 100 150

0

200

400

600

800

cwnd
sstresh
RTT

2. Remember BWE×RTTnoLoad

4. Drop cwnd to BWE×RTTnoLoad

3. Packet loss

1. RTT begin to grow

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

WESTWOOD TCP

Collateral damage – same as Reno. Good for lossy links. With 1% loss beats CUBIC with x5 factor.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

WESTWOOD TCP

vs. Reno Friendliness

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

WESTWOOD TCP

5-stream convergence

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

WESTWOOD TCP

1% loss link behavior

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

The future?

• Multiple signals (ACK inter-arrival time, timestamps, delay with minimal RTT value tracking, packet loss).

• Learning-based (the use of assumption model).

• No pure ACK clocking (switch to combination of ACK clocking + pacing model). cnwd + time gap from last sent packet.

• Integrating into other protocols (PCC, QUIC – on top of UDP).

• Pushing CA into user-space + using API (concept, Linux).

• Reinventing SlowStart (Flow-start, “Paced Chirping”, now more for datacenter environment).

Vivace Online learning

Remy Parameters “brute-forcing”

Sprout Stochastic forecasts, for mobile

BBR Heartbeat probes, estimator

ABC Explicit signaling

Indigo Machine learning

SCReAM For LTE+multimedia
Omniscient “Ideal” TCP

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

Core ideas:

1. RTT and Bottleneck BW estimation (RTprop and BtlBw variables) + active

probing.

2. Uses periodic spike-looking active probes (+/- 25%) for Bottleneck BW testing.

3. Uses periodic pauses for “Base RTT” measuring.

4. Tracks App-limited condition (nothing to send) to prevent underestimation.

5. Doesn’t use AIMD in any form or shape. Uses pacing instead. Can handle

sending speeds from 715bps to 2,9Tbps.

cwnd control rules - 4 different phases:

• Startup (beginning of the connection)

• Drain (right after startup)

• Probe_BW (most of the time)

• Probe_RTT (periodically every 10 seconds)

“Heartbeat” Source

https://elixir.bootlin.com/linux/v4.15.18/source/net/ipv4/tcp_bbr.c

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Optimal operation point

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Uncertainty principle:

We can not estimate max BW

and min RTT at the same

time (point)!

Solution: well, let’s do it

sequentially!

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Startup phase: exponential

probe for max BW.

Stopped if BW growth is

less than 25% for 3

sequential probes.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Drain phase: trying to get

rid of queue formed during

startup phase.

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Probe BW phase:

do spikes in sending rate

(1,25 followed by 0.75

gains, each one of RTT

length)

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

* From “Making Linux TCP Fast”. Yuchung Cheng. Neal Cardwell. Netdev 1.2 Tokyo, October, 2016”

Probe RTT phase:

drop cwnd to 4 for 0,2 sec

every 10 sec

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

Time,s

0 50 100 150

0

200

400

600

800
cwnd
sstresh
RTT

Expert question – Where are BtlBw probes?

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

Let’s zoom in (next page)

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

BtlBw probe
RTprop probe

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

vs. Reno Friendliness

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

5-stream convergence

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

1% loss link behavior – Great, full BW rate!

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

5% loss link behavior – 30Mbps out from 40, amazing!

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

10% loss link behavior – 24Mbit out of 40 – is it possible to kill it at all?

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

BBR TCP

20% loss link behavior – alright, we went too far , but…

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Attacks on CA

Three different types of attack are aimed to make a sender faster:

1. ACK division attack (intentional accelerating of CA algorithm)

2. DUP ACK spoofing (influencing on Fast Recovery phase)

3. Optimistic ACKing

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Used flowgrind commands
for cong in 'reno' 'scalable' 'htcp' 'bic' 'nv' 'cubic' 'vegas' 'hybla' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'lp';

do flowgrind -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -i 0.005 -O s=TCP_CONGESTION=$cong -T s=60,d=0 | egrep ^S >

/home/vlad/csv_no_loss/{$cong}_60s_no_loss.csv;

sleep 10

done

for cong in 'reno' 'scalable' 'htcp' 'highspeed' 'bic' 'cubic' 'vegas' 'hybla' 'nv' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'lp';

do flowgrind -n 5 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=90,d=0 | egrep ^S >

/home/vlad/{$cong}_90s_intra_fair.csv;

sleep 30

done

for cong in 'reno' 'scalable' 'htcp' 'highspeed' 'bic' 'cubic' 'vegas' 'hybla' 'nv' 'westwood' 'veno' 'yeah' 'illinois' 'cdg' 'bbr' 'lp';

do flowgrind -n 2 -F 0 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=90,d=0 -F 1 -H

s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=reno -i 0.01 -T s=90,d=0 | egrep ^S >

/home/vlad/{$cong}_90s_reno_friendl.csv;

sleep 30

done

flowgrind -n 5 -F 0 -H s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -T s=100,d=0 -F 1 -H

s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=10 -T s=80,d=0 -F 2 -H

s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=20 -T s=60,d=0 -F 3 -H

s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=30 -T s=40,d=0 -F 4 -H

s=10.10.10.10/192.168.112.253,d=10.10.10.12/192.168.112.233 -O s=TCP_CONGESTION=$cong -Y s=40 -T s=20,d=0| egrep ^S >

/home/vlad/{$cong}_100s_5str_converg.csv

5-stream intra-protocol fairness

Regular 1-stream probe

vs. Reno Friendliness

5-stream fairness with displaced start and different length

#sf18eu • Imperial Riding School Renaissance Vienna • Oct 29 - Nov 2

Q&A

Any questions?
* Are we really at this point? I can’t believe it

Topic for next time? Network-assisted congestion control, state-of-the-art

algorithms deep dive?

Thanks for your attention!

