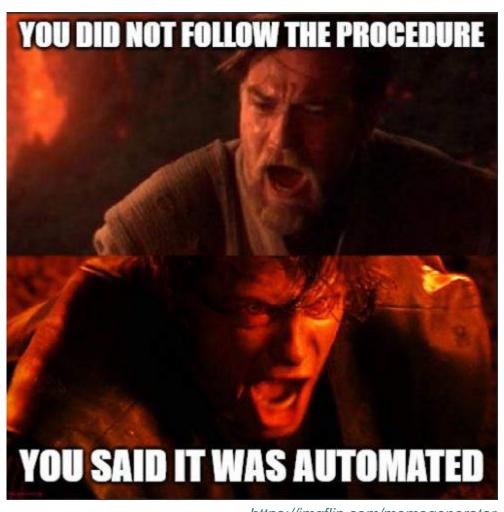


A Wireshark-driven approach to


MPLS

Juan Pablo Azar Ricciardi - Pierre Besombes

Pierre & Juan - Who are we?

- Network Engineers @ Rakuten
 - Dealing with network infrastructures (Backbone and DCs) and some other things
 - Part of a build and operation team,
 - Some previous experiences in the SP world and large enterprises,

https://imgflip.com/memegenerator

The goal of this talk is to

- Offer a Wireshark-driven approach to MPLS,
- Articulate the control plane and data plane's inner workings through packet analysis.
- Examine packet structures, label exchange mechanisms
- Discuss some capture and troubleshooting aspects

Sorry, but we won't talk much about RSVP-TE, SR-TE, MVPN, L2VPN...:-)

Introduction

#sf25eu

Why MPLS in 2025?

- Why do we talk about MPLS in 2025
 - SD-WAN, SASE, AIOPS, [whatever_buzzword]...,
 - MPLS is a core/foundational network technology (mainly in the service provider and enterprise world),
 - Many large networks rely on it,
 - There are recent evolutions with SR-MPLS...,

Let's shine some light on this technology with our favorite packet analysis tool!

What can you tell about this?

```
25 70.631720801 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=1/256, ttl=255 (reply in 26)
27 70.635712365 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=2/512, ttl=255 (reply in 28)
29 70.639597350 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=3/768, ttl=255 (reply in 30)
31 70.643780263 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=4/1024, ttl=255 (reply in 32)
```


Frame 31: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface eth0, id 0

Figure 11, Src: 50:04:00:01:00:04 (50:04:00:01:00:04), Dst: 50:04:00:03:00:02 (50:04:00:03:00:02)

What can you tell about this?

```
25 70.631720801 1.1.1.1
                                     7.7.7.1
                                                                    118 Echo (ping) request id=0xe0ce, seq=1/256, ttl=255 (reply in 26)
                                                          ICMP
                                     7.7.7.1
27 70.635712365 1.1.1.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=2/512, ttl=255 (reply in 28)
29 70.639597350 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=3/768, ttl=255 (reply in 30)
31 70.643780263 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=4/1024, ttl=255 (reply in 32)
```

```
Frame 31: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface eth0, id 0

Ethernet II, Src: 50:04:00:01:00:04 (50:04:00:01:00:04), Dst: 50:04:00:03:00:02 (50:04:00:03:00:02)

EtherType 0x8847
```


What can you tell about this?

```
118 Echo (ping) request id=0xe0ce, seq=1/256, ttl=255 (reply in 26)
25 70.631720801 1.1.1.1
                                                          ICMP
                                     7.7.7.1
                                                                     118 Echo (ping) request id=0xe0ce, seq=2/512, ttl=255 (reply in 28)
27 70.635712365 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                     7.7.7.1
                                                                     118 Echo (ping) request id=0xe0ce, seq=3/768, ttl=255 (reply in 30)
29 70.639597350 1.1.1.1
                                                          ICMP
31 70.643780263 1.1.1.1
                                     7.7.7.1
                                                                     118 Echo (ping) request id=0xe0ce, seq=4/1024, ttl=255 (reply in 32)
                                                          ICMP
```

```
Frame 31: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface eth0, id 0

Ethernet II, Src: 50:04:00:01:00:04 (50:04:00:01:00:04), Dst: 50:04:00:03:00:02 (50:04:00:03:00:02)

EtherType 0x8847
```

Type: MPLS label switched packet (0x8847)

What can you tell about this?

```
25 70.631720801 1.1.1.1
                                     7.7.7.1
                                                                    118 Echo (ping) request id=0xe0ce, seq=1/256, ttl=255 (reply in 26)
                                                          ICMP
                                     7.7.7.1
27 70.635712365 1.1.1.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=2/512, ttl=255 (reply in 28)
29 70.639597350 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=3/768, ttl=255 (reply in 30)
31 70.643780263 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                    118 Echo (ping) request id=0xe0ce, seq=4/1024, ttl=255 (reply in 32)
```

```
Frame 31: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface eth0, id 0

Ethernet II, Src: 50:04:00:01:00:04 (50:04:00:01:00:04), Dst: 50:04:00:03:00:02 (50:04:00:03:00:02)
```

MultiProtocol Label Switching Header, Label: 16007, Exp: 0, S: 1, TTL: 255

Internet Protocol version 4, Src. 1.1.1.1, Dst. 1.1.7.1

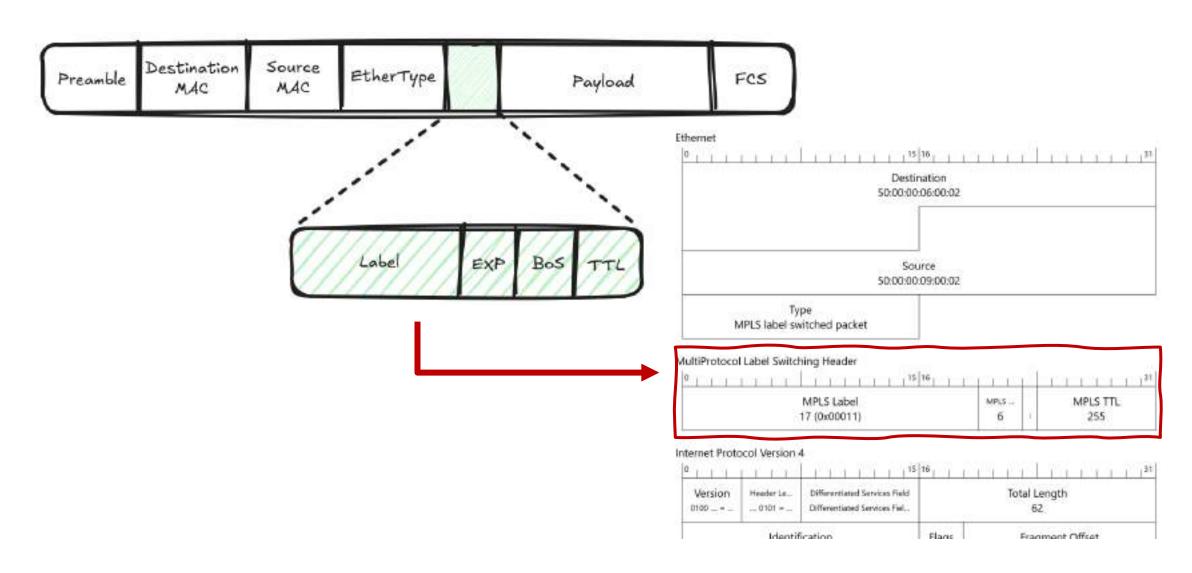
Internet Control Message Protocol


```
118 Echo (ping) request id=0xe0ce, seq=1/256, ttl=255 (reply in 26)
25 70.631720801 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                     118 Echo (ping) request id=0xe0ce, seg=2/512, ttl=255 (reply in 28)
27 70.635712365 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                     7.7.7.1
                                                                     118 Echo (ping) request id=0xe0ce, seq=3/768, ttl=255 (reply in 30)
29 70.639597350 1.1.1.1
                                                          ICMP
                                                                     118 Echo (ping) request id=0xe0ce, seq=4/1024, ttl=255 (reply in 32)
31 70.643780263 1.1.1.1
                                     7.7.7.1
                                                          ICMP
```



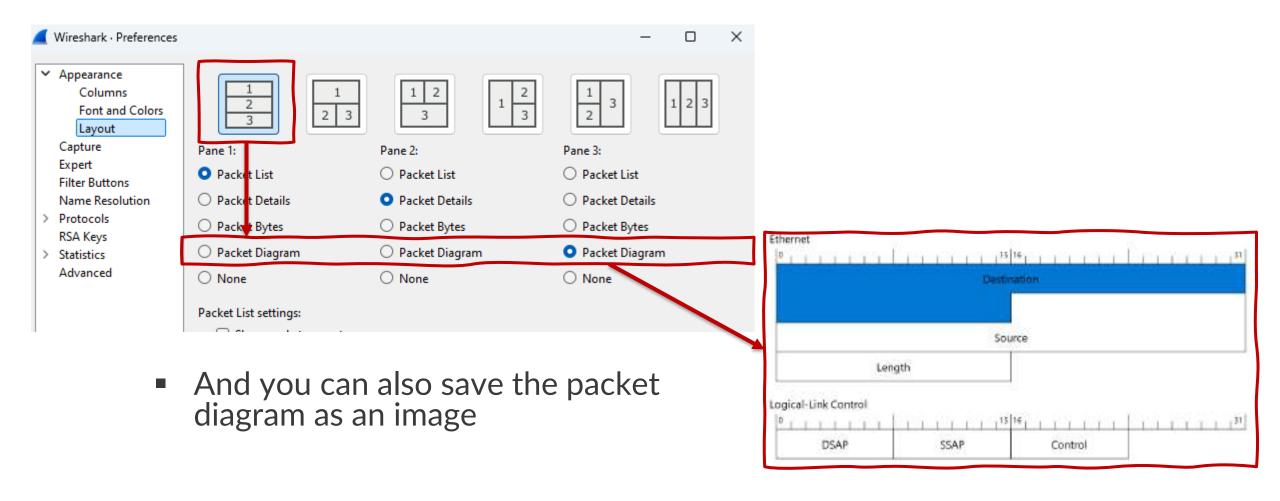
```
118 Echo (ping) request id=0xe0ce, seq=1/256, ttl=255 (reply in 26)
25 70.631720801 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                     118 Echo (ping) request id=0xe0ce, seq=2/512, ttl=255 (reply in 28)
27 70.635712365 1.1.1.1
                                     7.7.7.1
                                                          ICMP
                                                                     118 Echo (ping) request id=0xe0ce, seq=3/768, ttl=255 (reply in 30)
29 70.639597350 1.1.1.1
                                     7.7.7.1
                                                          ICMP
31 70.643780263 1.1.1.1
                                     7.7.7.1
                                                                     118 Echo (ping) request id=0xe0ce, seq=4/1024, ttl=255 (reply in 32)
                                                          ICMP
```

```
Frame 31: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface eth0, id 0
Ethernet II, Src: 50:04:00:01:00:04 (50:04:00:01:00:04), Dst: 50:04:00:03:00:02 (50:04:00:03:00:02)
MultiProtocol Label Switching Header, Label: 16007, Exp: 0, S: 1, TTL: 255
Internet Protocol Version 4, Src: 1.1.1.1, Dst: 7.7.7.1
Internet Control Message Protocol
        Frame 23: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface eth0, id 0
        Ethernet II, Src: 50:04:00:01:00:04 (50:04:00:01:00:04), Dst: 50:04:00:03:00:02 (50:04:00:03:00:02)
        ▼ MultiProtocol Label Switching Header, Label: 16007, Exp: 0, S: 1, TTL: 255
            0000 0011 1110 1000 0111 .... = MPLS Label: 16007
            .... = MPLS Experimental Bits: 0
            .... = MPLS Bottom Of Label Stack: 1
            .... 1111 1111 = MPLS TTL: 255
        Internet Protocol Version 4, Src: 1.1.1.1, Dst: 7.7.7.1
        Internet Control Message Protocol
                                                        mpls
                                                        eth.type == 0x8847 | eth.type == 0x8848
                              MPLS header
                                                        eth.type in { 0x8847, 0x8848 }
                                                        mpls.label
```



- MPLS (Multi-Protocol Label Switching)
 - Technology relying on "labels" to perform forwarding decision
 - Label is inserted using a shim-header after Ethernet header
 - Initially used to speed up forwarding lookups (better performance using labels vs IP routing), now it is used to give you flexibility and make it possible to run various types of services (abstraction)
 - Fields: (Total 32 bits = 4 bytes)
 - Label (20 bits): numeric value of the label,
 - Experimental bits (3bits): field that is leverage for QoS usually, also called TC,
 - Bottom of stack (1bit): when multiple labels are present is false (0), indicates the last label when true (1)
 - Time to live TTL (8 bits): prevents loop prevention, decremented by each router performing label switching along the path.

Packet Diagram


Frame with MPLS header

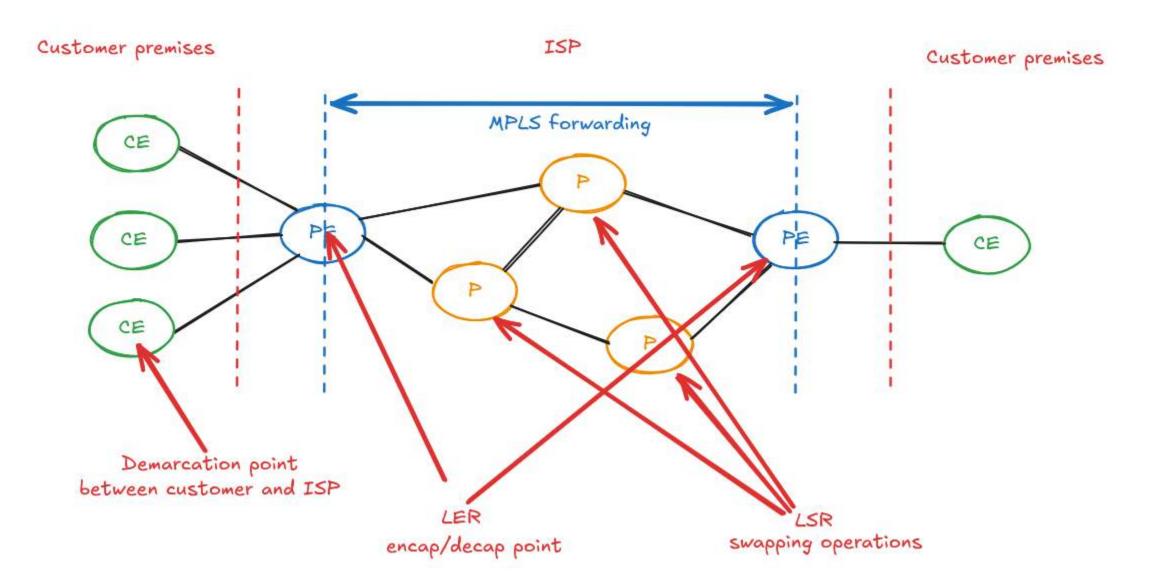
Packet Diagram



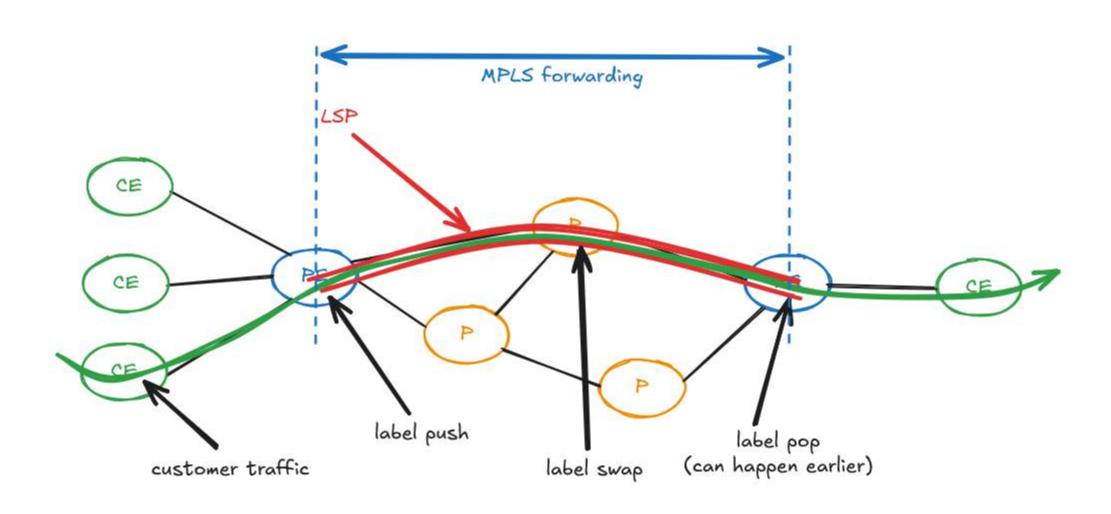
- Wireshark packet diagram for learning/visualization purposes
 - Under Preferences > layout

Special Labels

- Let's get through some terminology
 - CE, PE, P (Customer Equipment, Provider Edge, Provider) routers
 - Routers located at the customer site, the provider edge and inside the backbone, respectively
 - LSP (Label Switched Path)
 - The path a packet takes through an MPLS network, defined by a sequence of labels.
 - LER (Label Edge Router)
 - Push the first label (ingress LER) and pop the last label (egress LER).
 - LSR (Label Switch Router)
 - Inside the backbone, swaps labels based on forwarding tables. Never looks inside the IP packet header (or others headers)



- Let's get through some terminology
 - CE, PE, P (Customer Equipment, Provider Edge, Provider) routers
 - Routers located at the customer site, the provider edge and inside the backbone, respectively
 - LSP (Label Switched Path)
 - The path a packet takes through an MPLS network, defined by a sequence of labels.
 - LER (Label Edge Router)
 - Push the first label (ingress LER) and pop the last label (egress LER).
 - LSR (Label Switch Router)


Pablo's note here, usually we have:

- LSR = P
- LER = PE
- Why different names for same thing ... because we can?

MPLS lingo cont'd

- Let's get through some terminology
 - Signaling: the process by which MPLS speakers (LERs, LSRs)
 communicate and agree on which labels to use for which FECs, and
 how to build the LSPs end-to-end,
 - FEC (Forwarding Equivalence Class): a way to treat the packet. Packets that share the same characteristics will be assigned a class and will follow the same path (a LSP in our case)
 - MPLS VPN: create a separated virtual network space (layer 3 or layer
 2) over the shared provider infrastructure,
 - PHP (Penultimate Hop Popping): The second-to-last LSR that pops the top label

MPLS tables and forwarding

- Forwarding decisions
 - Routers build different forwarding tables to deal with a label-based forwarding paradigm
 - LIB: Label Information Base
 - LFIB: Label Forwarding Information Base
 - FIB: Forwarding Information Base

The LIB contains all the known label mappings on a router. It stores locally generated labels as well as those learned from neighbors by signaling protocols

The LFIB is the actual MPLS forwarding table used by the router. It maps incoming labels to outgoing labels, outgoing interfaces, next-hop IP addresses

The FIB is the actual IP forwarding table datastructure. It contains network and outgoing interfaces to quickly forward traffic

MPLS tables and forwarding

LIB

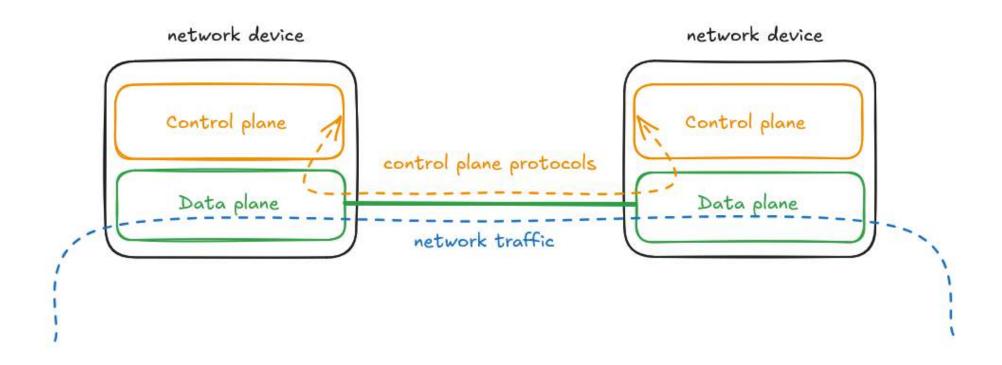
RP/0/RP0/CPU0:P3#show mpls ldp bindings				
Tue Oct 28 13:36:37.002 UTC				
1.1.1.1/32,				
Loca	Local binding: label: 24008			
Remote bindings: (3 peers)				
	Peer	Label		
	3.3.3.3:0	16		
	11.11.11.11:0	24008		
	22.22.22.22:0	24009		
2.2.2.2/32,	rev 32			
Local binding: label: 24010				
Remote bindings: (3 peers)				
	Peer	Label		
	3.3.3.3:0	17		
	11.11.11.11:0	24010		
	22.22.22.22:0	24011		

FIB

and the second	1925 172-122-13	274-559-750
Prefix	Next Hop	Interface
9.0.8.0/0	drop	default handler
0.0.0.0/32	broadcast	
1.1.1/32	10.11.33.11/32	GigabitEthernet0/0/0/0
1.2.2.2/32	10.22.33.22/32	GigabitEthernet0/0/0/2
1.3.3.3/32	10.33.3.3/32	GigabitEthernet8/8/8/3
1.4.4.4/32	10.33.44.44/32	GigabitEthernet0/0/0/1
10.1.11.9/24	10.11.33.11/32	GigabitEthernet8/8/8/8
10.2.22.0/24	10.22.33.22/32	GlgabitEthernet0/0/0/2
10.11.22.8/24	10.11.33.11/32	GigabitEthernet0/0/8/0
	10.22.33.22/32	GigabitEthernet8/8/8/2
10.11.33.6/24	attached	GigabitEthernet8/8/8/8
10.11.33.0/32	broadcast	GigabitEth

LFIB

Pablo's note here:


The tables for real (Cisco IOS-XR)

P/8/8	PO/CPUB:P30sh	now mpls forwarding			
we Do	t 28 13:41:00	7.284 UTC		wom sources.com	2.74A.15.100596
ocal	Outgoing	Prefix	Dutgoing	NOXE HOD	Bytes
Inda.	Label	pr 10	Interface.		Switched
	**********	******		122222222222222	
24085	Pap	11.11.11.11/32	510/8/8/0	10.11.33.11	526267
24091	Unlabelled	44.44.44.44/32	510/8/8/1	10.33.44.44	В
14082	Pop	10.11.44.8/24	510/8/5/0	10.11.33.11	8
	Unlabelled	10 11 44 8/24	Si0/8/8/1	10.33.44.44	9
24085	POD.	10.1.11.0/24	010/0/0/0/0	10.11.35.11	U
24084	Pop	10.11.22.8/24	610/8/8/0	10.11.33.11	8
00000000	Pep	18.11.22.8/24	510/8/8/2	18.22.33.22	B
24095	unlabelled	10.22.44.8/24	519/9/8/1	10.33.41.44	8
24085	Unlabelled	10.44.4.0/24	010/8/8/1	10.33.44.44	8
4007	Pop	22.22.22.22/32	510/8/8/2	10.22.33.22	526772
24088	24588	1.1.1.1/32	510/8/8/0	18.11.33.11	8
24689	Pop	18.2.22.0/24	510/8/8/2	10.22.33.22	H
24019	24911	2.2.2.2/32	510/0/8/2	10.22.33.22	9
24011	Prip	3.3.1.3/32	G10/8/8/3	10.33 3.3	517729
24012	Hinlahelled	4.4.4.4/32	510/0/8/1	10.33.44.44	8

Control and data plane

- How to build these tables?
 - Using some network control plane protocols
- The control plane is the brain of the device, computing and pushing the forwarding information to the data plane.

To make it clear!

To show an easy example of transport labels

The same happens with the P router, which advertises label 200 towards LDP In this case, the PE ey mate for 1.1.1.1 LDP ey mate for 1.1.1.1 the left PE router My label is 2001 advertises (via LDP) My label is 100/ that if the P router needs to forward a labeled packet towards 1.1.1.1, it PE should use label PE I need to send a 100. packet to 1.1.1.1 1.1.1.1 push 3,3,3,3 2.2.2.2 200 Swap 200/100 packet 100 packet Left PE knows which label to use to send to 1.1.1.1. Since this is a simple example, we are skipping labels 0 and 3, as well as PHP behavior for now.

Remember those tables? Let's see them in action!


```
PE1#show mpls ldp bindings
lib entry: 1.1.1.1/32, rev 28
local binding: label: imp-null
remote binding: lsr: 11.11.11:0, label: 24008
remote binding: lsr: 3.3.3.3:0, label: 16
```

We can see how the local label assignment determines how our neighbors will handle the labeled packet they receive — whether they will push, swap, or pop the 'Implicit Null' corresponds to label 3, one of the reserved labels, we've seen that earlier!

```
1.1.1.1/32. rev 28
                                           RP/0/RP0/CPU0:ios#show mpls forwarding prefix 1.1.1.1/32
      Local binding: label: 24008
                                           Mon Nov 3 09:38:14.042 UTC
       Remote bindings: (3 peers)
                                           Local Outgoing
                                                            Prefix
                                                                             Outgoing
                                                                                         Next Hop
          Peer
                            Label
                                           Label Label or ID
                                                                          Interface
          10.1.11.1:0
                            ImpNull
                                           24008 Pop
                                                                                         10.1.11.1
                                                          1.1.1.1/32 Gi0/0/0/3
          22.22.22.22:0
                            24009
          33.33.33.33:0
                            24008
```

```
PE
Mon Nov 3 09:43:08.967 UTC
                                                                                    Outgoing
                                               Local Outgoing
                                                                 Prefix
                                                                                                 Next Hop
1.1.1.1/32, rev 28
                                                                                    Interface
                                               Label Label
                                                                 or ID
       Local binding: label: 24008
       Remote bindings: (3 peers)
                                               24008 24008
                                                                 1.1.1.1/32
                                                                                    Gi0/0/0/0
                                                                                                 10.11.33.11
            Peer
                               Label
           3.3.3.3:0
                               16
           11.11.11.11:0
                               24008
           44.44.44.44:0
                               24008
```

Label distribution

- So, to impose labels on IP packets, routers need to have label tables populated.
 - Various protocols can be used to exchange labels and do LSP "signaling", as well as defining labels for specific resources (a VPN for example), this, depending on the use case
 - LDP (Label Discovery Protocol)
 - RSVP-TE (Resource Reservation Protocol Traffic Engineering)
 - MP-BGP with VPNv4 (L3VPN), IPv4-LU (Labelled Unicast), Ethernet VPN (L2VPN)
 - IS-IS/OSPF (used in Segment Routing, to derive labels)
 - Without a protocol, statically (use case: configured through a controller)

Label distribution

- So, to impose labels on IP packets, routers need to have label tables populated.
 - Various protocols can be used to exchange labels and do LSP "signaling", as well as defining labels for specific resources (a VPN for example), this, depending on the use case
 - LDP (Labe Discovery Protocol)
 - RSVP-TE (Resource Reservation Protocol Traffic Engineering)
 - MP-BGP with VPNv4 (L3VPN), IPv4-LU (Labelled Unicast), Ethernet VPN (L2VPN)
 - IS-IS/OSPF (used in Segment Routing, to derive labels)
 - Without a protocol, statically (use case: configured through a controller)

What can you tell about this?

Time	Jource	JICI OIL	Destination	ווונטנטני וווונטנטני
59.693550324	3.3.3.3	646	4.4.4.4	276 TCP
59.703382359	3.3.3.3	646	4.4.4.4	276 TCP
59.705051118	4.4.4.4	646	3.3.3.3	646 UDP
59.714887541	4.4.4.4	27625	3.3.3.3	646 TCP
59.726286564	3.3.3.3	646	4.4.4.4	276 TCP
59.927527777	4.4.4.4	27625	3.3.3.3	646 TCP
61.912422350	4.4.4.4	646	2.2.2.2	646 UDP
62.100330854	20.2.4.4	646	224.0.0.2	646 UDP
62.635315519	20.2.4.2	646	224.0.0.2	646 UDP
64.986977563	2.2.2.2	36055	6.6.6.6	179 TCP
66.147517129	4.4.4.4	646	2.2.2.2	646 UDP
66.500335926	20.2.4.2	646	224.0.0.2	646 UDP
66.837254000	20.2.4.4	646	224.0.0.2	646 UDP
70.028042398	4.4.4.4	646	2.2.2.2	646 UDP
70.860110277	20.2.4.2	646	224.0.0.2	646 UDP
71.418084747	20.2.4.4	646	224.0.0.2	646 UDP
64.986977563 66.147517129 66.500335926 66.837254000 70.028042398 70.860110277	2.2.2.2 4.4.4.4 20.2.4.2 20.2.4.4 4.4.4.4 20.2.4.2	36055 646 646 646 646 646	6.6.6.6 2.2.2.2 224.0.0.2 224.0.0.2 2.2.2.2 224.0.0.2	179 TCP 646 UDP 646 UDP 646 UDP 646 UDP 646 UDP

What can you tell about this?

TITLE	Jource	JICI OIL	Destination	ווונטני ווונטני
59.693550324	3.3.3.3	646	4.4.4.4	276 TCP
59.703382359	3.3.3.3	646	4.4.4.4	276 TCP
59.705051118	4.4.4.4	646	3.3.3.3	646 UDP
59.714887541	4.4.4.4	27625	3.3.3.3	646 TCP
59.726286564	3.3.3.3	646	4.4.4.4	276 TCP
59.927527777	4.4.4.4	27625	3.3.3.3	646 TCP
61.912422350	4.4.4.4	646	2.2.2.2	646 UDP
62.100330854	20.2.4.4	646	224.0.0.2	646 UDP
62.635315519	20.2.4.2	646	224.0.0.2	646 UDP
64.986977563	2.2.2.2	36055	6.6.6.6	179 TCP
66.147517129	4.4.4.4	646	2.2.2.2	646 UDP
66.500335926	20.2.4.2	646	224.0.0.2	646 UDP
66.837254000	20.2.4.4	646	224.0.0.2	646 UDP
70.028042398	4.4.4.4	646	2.2.2.2	646 UDP
70.860110277	20.2.4.2	646	224.0.0.2	646 UDP
71.418084747	20.2.4.4	646	224.0.0.2	646 UDP

Filter: ldp

LDP (TCP)

```
> Frame 134: Packet, 396 bytes on wire (3168 bits), 396 bytes captured (3168 bits) on interface eth0, id 0
> Ethernet II, Src: 50:00:00:07:00:02 (50:00:00:07:00:02), Dst: 50:00:00:05:00:02 (50:00:00:05:00:02)
> MultiProtocol Label Switching Header, Label: 16, Exp: 6, S: 1, TTL: 255
> Internet Protocol Version 4, Src: 4.4.4.4, Dst: 3.3.3.3
 Transmission Control Protocol, Src Port: 27625, Dst Port: 646, Seq: 65, Ack: 73, Len: 338
> Label Distribution Protocol
V Label Distribution Protocol
    Version: 1
    PDU Length: 316
    LSR ID: 4.4.4.4
    Label Space ID: 0
  > Address Message
  > Label Mapping Message
  > Label Mapping Message
  > Label Mapping Message
  > Label Mapping Message
```


LDP (UDP)

> Hello Message

LSR ID: 2.2.2.2

Label Space ID: 0

Label Discovery Protocol (LDP)

- LDP (Label Discovery Protocol) is used in many network to perform label exchange
 - Exchange labels bindings for IP addresses
 - Rely on both TCP and UDP, port 646
 - UDP for Hello message (to 224.0.0.2, or directed)
 - TCP for reliable label exchange
 - LDP IPv4 Transport Address: is the IP used to establish the TCP session between peers (usually the loopback address).
 - Another specific case: LDP targeted sessions (e.g.: L2VPN/VPLS) established between non-direct peers (vs directed connected neighbors)
 - Different operation modes possible to be conservative or not (DoD, DU)

Label Discovery Protocol (LDP)

LDP,

- behaves as locally significant between two directly connected peers
- creates LSP following the underlying IGP (IGP metrics matters here)
- will need to be configured consistently with the IGP, this synchronization is important (or might lead to blackhole),
- Upon IGP convergence, new paths will be reflected automatically by LDP
- Static and directly connected routes are considered "IGP" from LDP standpoint
- Common TE technique is to tweak IGP path costs

What can you tell about this?

```
131 135.079235393 3.3.3.3
                                       1.1.1.1
                                                                        62 16562 → 179 [SYN] Seq=0 Win=16384 Len=0 MSS=1396
                                                                        54 179 → 14845 [ACK] Seq=39 Ack=58 Win=15919 Len=0
                                       3.3.3.3
                                                             TCP
124 129.004398118 4.4.4.4
123 128.799600246 3.3.3.3
                                        4.4.4.4
                                                             BGP
                                                                        77 KEEPALIVE Message
                                       3.3.3.3
                                                                        54 179 → 29129 [ACK] Seq=40 Ack=59 Win=16061 Len=0
119 125.618780189 1.1.1.1
                                                             TCP
                                       1.1.1.1
                                                                        58 29129 → 179 [FIN, PSH, ACK] Seq=58 Ack=40 Win=15852 Len=0
118 125.615172485 3.3.3.3
                                                             TCP
                                                                        58 29129 → 179 [ACK] Seg=58 Ack=40 Win=15852 Len=0
117 125.614408993 3.3.3.3
                                       1.1.1.1
                                                             TCP
                                       3.3.3.3
                                                             TCP
                                                                        54 179 → 29129 [FIN, PSH, ACK] Seq=39 Ack=58 Win=16061 Len=0
116 125.613577384 1.1.1.1
```

```
Frame 144: 195 bytes on wire (1560 bits), 195 bytes captured (1560 bits) on interface eth0, id 0
Ethernet II, Src: 50:02:00:10:00:06 (50:02:00:10:00:06), Dst: 50:02:00:14:00:02 (50:02:00:14:00:02)
▶ Internet Protocol Version 4, Src: 1.1.1.1, Dst: 3.3.3.3
Transmission Control Protocol, Src Port: 179, Dst Port: 16562, Seq: 104, Ack: 272, Len: 141
▼ Border Gateway Protocol - UPDATE Message
    Length: 112
    Type: UPDATE Message (2)
    Withdrawn Routes Length: 0
    Total Path Attribute Length: 89
  Path attributes
     ▼ Path Attribute - MP REACH NLRI

    Flags: 0x80, Optional, Non-transitive, Complete

          Type Code: MP REACH NLRI (14)
         Lenath: 48
         Address family identifier (AFI): IPv4 (1)
          Subsequent address family identifier (SAFI): Labeled VPN Unicast (128)
       Next hop: RD=0:0 IPv4=1.1.1.1
```

Number of Subnetwork points of attachment (SNPA): 0 ▼ Network Layer Reachability Information (NLRI) BGP Prefix ▼ BGP Prefix Prefix Length: 120 Label Stack: 33 (bottom) Route Distinguisher: 1:1 MP Reach NLRI IPv4 prefix: 192.168.100.100 Path Attribute - ORIGIN: INCOMPLETE ▶ Path Attribute - AS PATH: 65000

BGP VPNv4


```
110 123,0131/2403 3,3,3,3
    117 125.614408993 3.3.3.3
                                           1.1.1.1
                                                                 TCP
                                                                            58 29129 - 179 [ACK] Seq=58 Ack=40 Win=15852 Len=0
    116 125.613577384 1.1.1.1
                                           3.3.3.3
                                                                 TCP
                                                                            54 179 - 29129 [FIN, PSH, ACK] Seq=39 Ack=58 Win=16061 Len=0
Frame 144: 195 bytes on wire (1560 bits), 195 bytes captured (1560 bits) on interface eth0, id 0
 Ethernet II, Src: 50:02:00:10:00:06 (50:02:00:10:00:06), Dst: 50:02:00:14:00:02 (50:02:00:14:00:02)
 Internet Protocol Version 4, Src: 1.1.1.1, Dst: 3.3.3.3
 Border Gateway Protocol - UPDATE Message
    Marker: fffffffffffffffffffffffffffffffffff
    Length: 112
    Type: UPDATE Message (2)
    Withdrawn Routes Length: 0
   Path attributes
       ratii Attiibute - Mr KEACH NEKI
        ▶ Flags: 0x80, Optional, Non-transitive, Complete
          Type Code: MP REACH NLRI (14)
          Length: 48
          Address family identifier (AET), TDv4 (1)
          Subsequent address family identifier (SAFI): Labeled VPN Unicast (128)
```

▶ BGP Prefix

▼ BGP Prefix

Prefix Length: 120

Label Stack: 33 (bottom)

Route Distinguisher: 1:1

MP Reach NLRI IPv4 prefix: 192.168.100.100

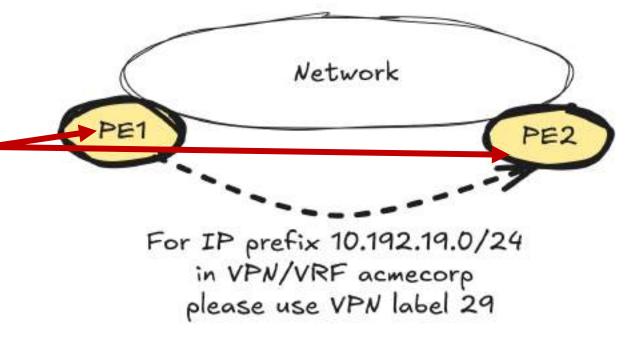
Number of Subhetwork points of attachment (SNPA). U

▼ Network Layer Reachability Information (NLRI)

Path Attribute - ORIGIN: INCOMPLETE

Next hop: RD=0:0 IPv4=1.1.1.1

▶ Path Attribute - AS PATH - 65000


```
PE3#show bgp vpnv4 unicast all neighbors 1.1.1.1 routes
BGP table version is 17, local router ID is 3.3.3.3
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
              r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
              x best-external, a additional-path, c RIB-compressed,
              t secondary path, L long-lived-stale,
Origin codes: i - IGP, e - EGP, 7 - incomplete
RPKI validation codes: V valid, I invalid, N Not found
                      Next Hop
     Network
                                         Metric LocPrf Weight Path
Route Distinguisher: 1:1
 *>i 172.16.101.0/24 1.1.1.1
                                                             0 65000 ?
 *>1 192.168.100.100/32
                     1.1.1.1
                                               0 100
                                                            0 65000 ?
```

BGP VPNv4 (VPNv6)

- BGP can be used to exchange labels in specific scenarios
 - BGP is a TCP application, using well know port 179
 - BGP is an extensible protocol that can carry multiple address families
 - We'll focus on VPNv4 address family, which will signal the label associated with a VRF (routing/forwarding table instance, aka VPN)
 - Each VRF is separate from the others

Goal is to distribute the label associated to a prefix and propagate it elsewhere in or out a network. This label being received on a remote ingress LERs (PEs) indicate it what to impose to reach this specific destination

BGP VPNv4 / VPNv6

Pablo's Note:

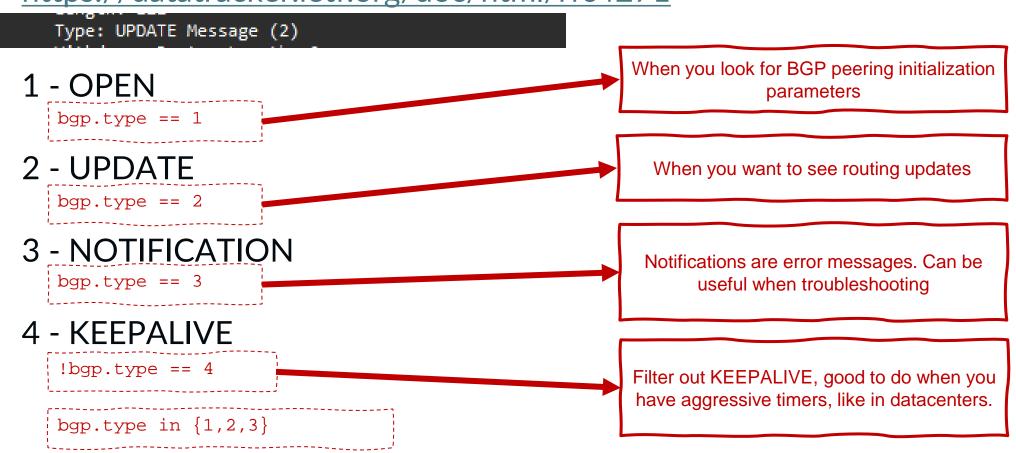
- The VPN label assigned by the PE is not necessarily the same for all prefixes within the same VPN.
- For example, PE1 might assign label 30 for prefix x.x.x.x/x and label 31 for prefix y.y.y.y/y both in the same VRF.
- It could be per-prefix or per-table.

scenarios

le address families

label associated with a

Goal is to distribute the label associated to a prefix and propagate it elsewhere in or out a network. This label being received on a remote ingress LERs (PEs) indicate it what to impose to reach this specific destination

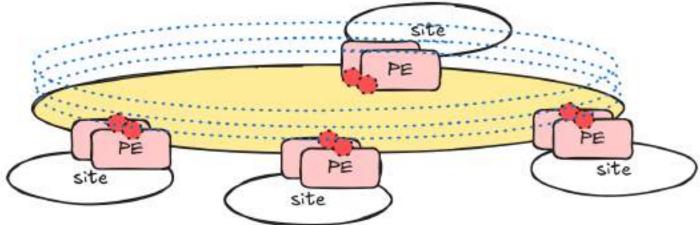


BGP - filtering **BGP** messages

You can quickly isolate BGP messages using the message type

https://datatracker.ietf.org/doc/html/rfc4271

MP-BGP - AFI/SAFIMP



- BGP AFI/SAFI structure is defined under <u>RFC4760</u> and maintained by IANA
 - https://www.iana.org/assignments/address-family-numbers/addressfamily-numbers.xhtml
 - https://www.iana.org/assignments/safi-namespace/safinamespace.xhtml
- Each assignment is also described in the related protocol extension RFC

83	BGP CAR	[RFC-ietf-idr-bgp-car-16]
84	BGP VPN CAR	[RFC-ietf-idr-bgp-car-16]
85	BGP-MUP SAFI	[draft-mpmz-bess-mup-safi-00]
86-127	Unassigned	
128	MPLS-labeled VPN address	[RFC4364][RFC8277][RFC9252]
129	Multicast for BGP/MPLS IP Virtual Private Networks (VPNs)	[RFC6513][RFC6514]
130-131	Reserved	[RFC4760]
132	Route Target constrains	[RFC4684]
133	Dissemination of Flow Specification rules	[RFC8955]
134	L3VPN Dissemination of Flow Specification rules	[RFC8955]

- MPLS VPNs (Virtual Private Network)
 - Allows service providers to carry multiple customer networks over a shared backbone, transparently,
 - VPN service separation is achieved
 - On control-plane side, with VRF, Route Distinguishers, and Route Targets, labels
 - On data-plane side, through label switching that provide an abstraction layer,
 - VPNs can be layer 2 or layer 3, signaled differently
 - MPLS core remains labels switched (BGP free-core, label forwarding only)

A few more pieces,

Route distinguishers

- Unique identifiers to make IP prefixes unique and distinguish them in an L3VPN environment (the IP prefix becomes a VPN prefix)
- Ensure that identical IP prefixes can coexist inside different VRF/VPNs,
- 64-bit value, often in the format of AS:NN or IP:NN, where AS is the autonomous system number or IP is an IP address (IP of the PE), and NN is a unique number.

BGP Communities

 are used to tag routes with values that can be later matched and used to influence routing decisions and policies (two types, standard and extended communities)

Route targets

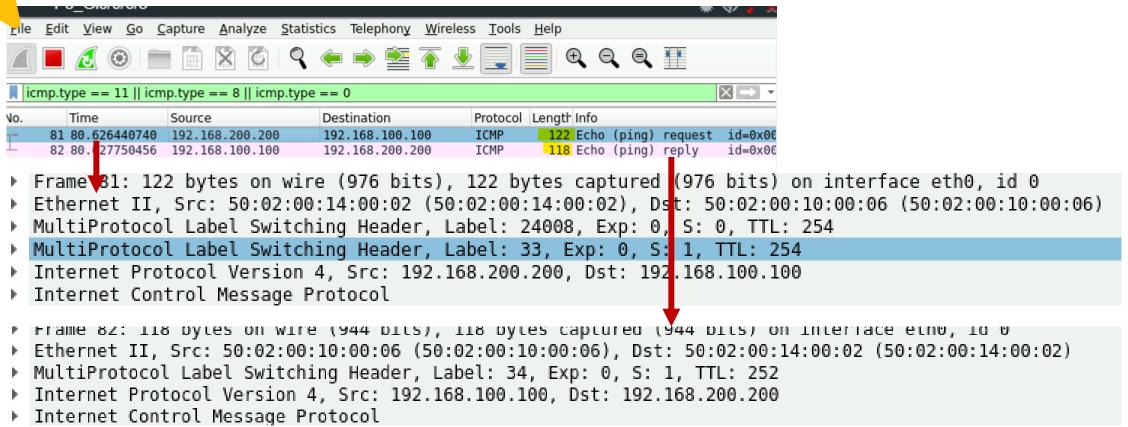
- Route targets are extended BGP communities used to control the import and export of routes in L3VPNs.
- Often in the format of AS:NN (0x00) or IP:NN (0x01),

MPLS VPNs

- MPLS VPNs (Virtual Private Network)
 - VPNs communication is based on at least two labels, a VPN label and one or more transport label(s)
 - VPN labels:
 - L3VPN: exchanged with MP-BGP with VPNv4/VPNv6 routes and their associated labels for unicast, multicast traffic can also be carried (MVPN, various flavors)
 - L2VPN: exchanged with MP-BGP EVPN / VPLS or LDP, different options there too for signaling

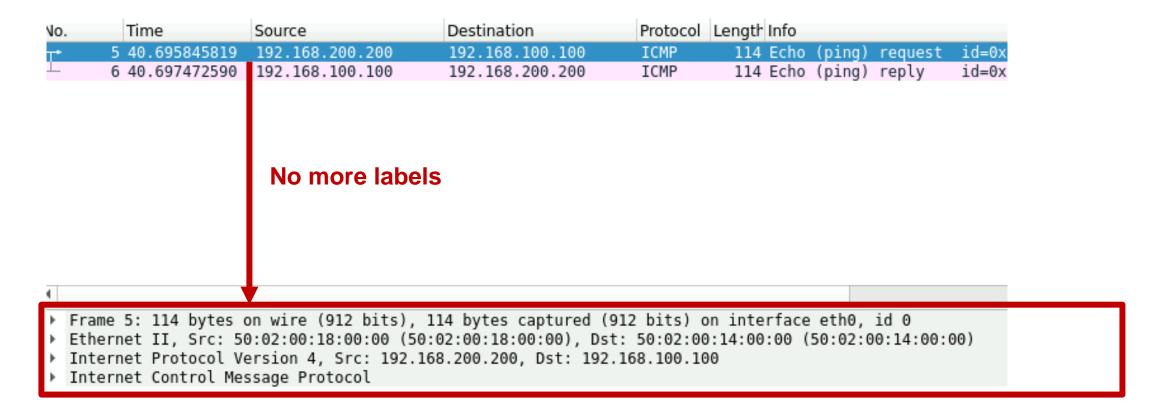
This top label will be swapped along the path by P routers, the service one will remain intact (exchanged between PE routers with MP-BGP).

Capture, between P routers


Internet Control Message Protocol

```
Destination
            Time
                          Source
                                                                       Protocol
                                                                               Length Info
  No.
         89 105.095003583 192.168.200.200
                                                 192.168.100.100
                                                                       ICMP
                                                                                 122 Echo (ping) request
                                                                                                           id=0\times00
                                                                                 122 Echo (ping) reply
                                                                                                           id=0x00
         90 105.095880477 192.168.100.100
                                                 192.168.200.200
                                                                       ICMP
▶ Frame 89: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) on interface eth0, id 0
▶ Ethernet II. Src: 50:02:00:10:00:03 (50:02:00:10:00:03). Dst: 50:02:00:0f:00:03 (50:02:00:0f:00:03)
MultiProtocol Label Switching Header, Label: 24008, Exp: 0, S: 0, TTL: 253
 MultiProtocol Label Switching Header, Label: 33, Exp: 0, S: 1, TTL: 254
 Internet Protocol Version 4, Src: 192.168.200.200, Dst: 192.168.100.100
```

- ▶ Frame 90: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) on interface eth0, id 0
 ▶ Ethernet II. Src: 50:02:00:0f:00:03 (50:02:00:0f:00:03). Dst: 50:02:00:10:00:03 (50:02:00:10:00:03)
 ▶ MultiProtocol Label Switching Header, Label: 24011, Exp: 0, S: 0, TTL: 253
- MultiProtocol Label Switching Header, Label: 24011, Exp: 0, S: 0, TTL: 253
 MultiProtocol Label Switching Header, Label: 34, Exp: 0, S: 1, TTL: 254
- Internet Protocol Version 4, Src: 192.168.100.100, Dst: 192.168.200.200
- Internet Control Message Protocol



Traffic is reaching the destination. What happens between last P - PE segment on the return path?

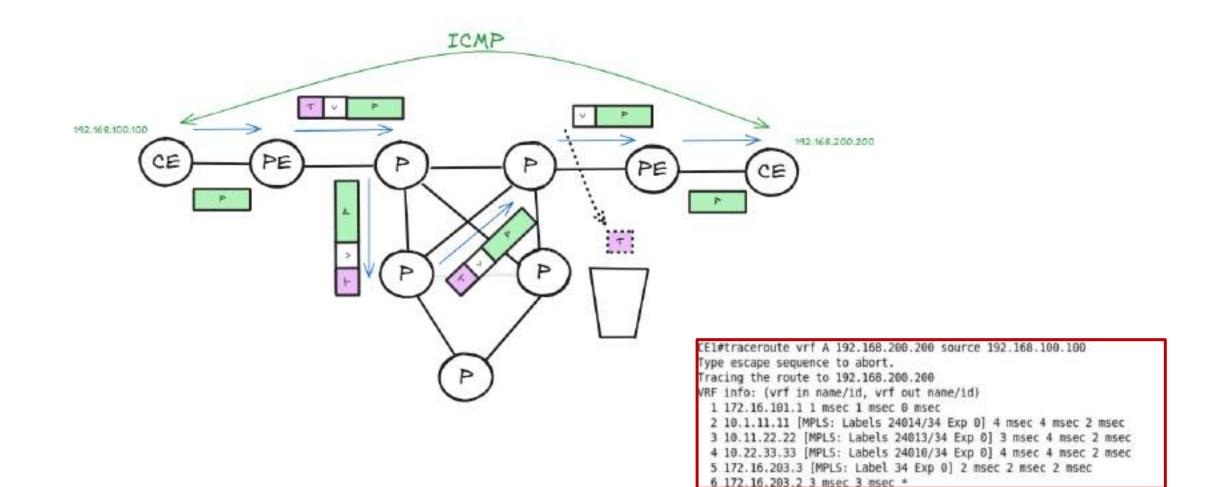
Finally, PE-CE capture

Label stack

- Label stack
 - label stack is a series of MPLS headers inserted
 - Each label represents a forwarding instruction, LSRs use it to decide where the packet goes next, without looking into the IP header.
 - Labels are stacked in a Last-In, First-Out (LIFO) manner.
 - The top label (outermost) determines the current forwarding action.
 - S-bit (Bottom of Stack/BoS) marks which label is the last one before the payload

Frame

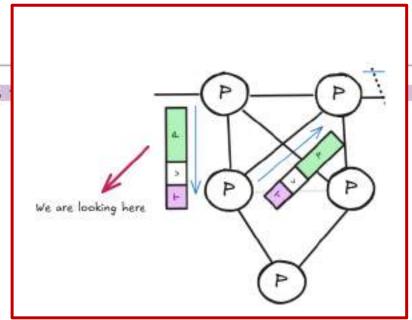
MPLS header


MPLS header

MPLS header

payload

Walk Together

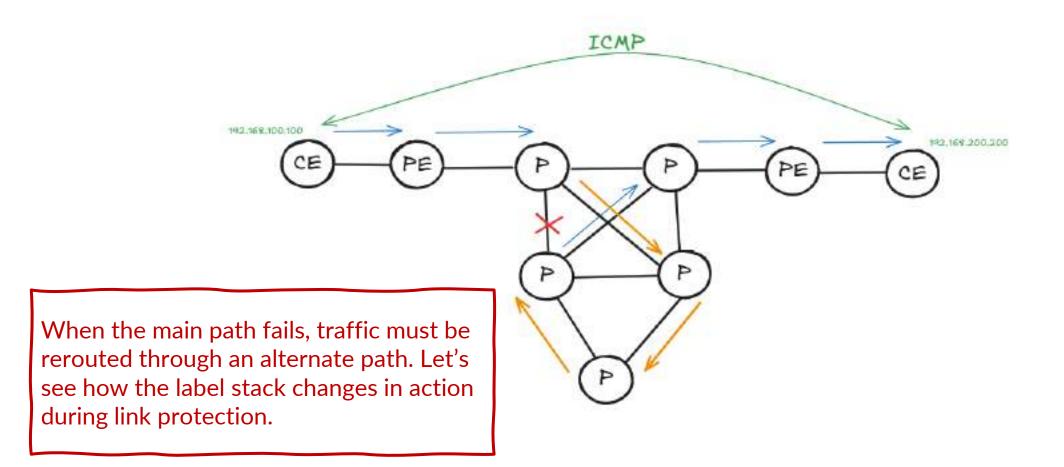


Walk Together

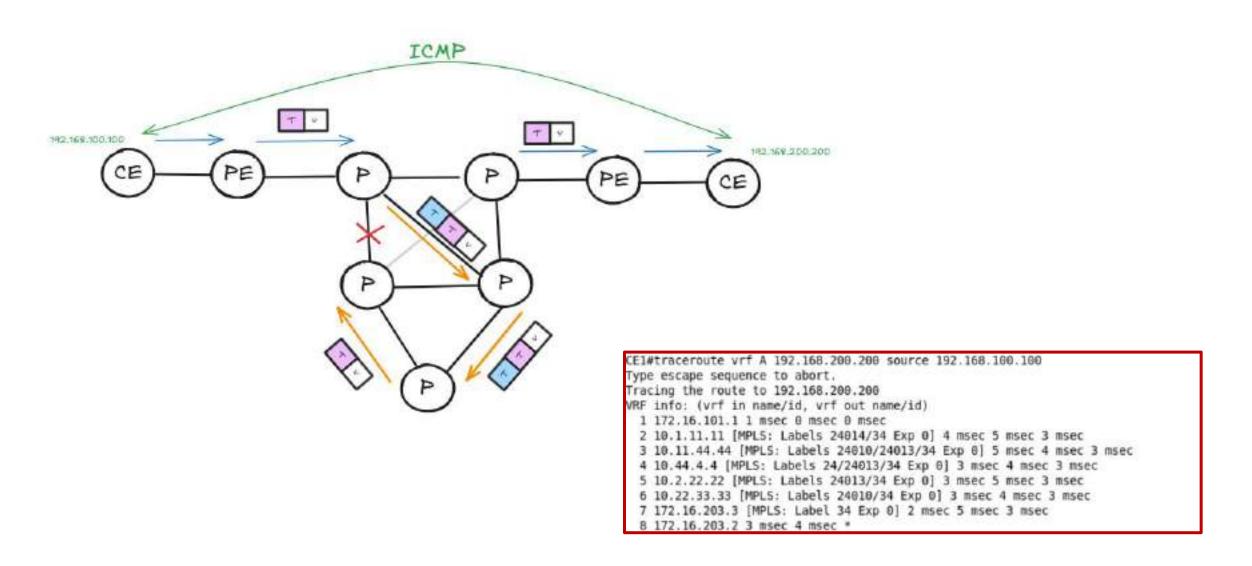
No.	Time	Source	Destination	Protocol	Length Info
-	51 45.872990991	192.168.100.100	192,168,200,200	ICMP	122 Echo (ping) request id-0x000c, seq-0/0,


```
> Frame 51: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) on interface 8
```

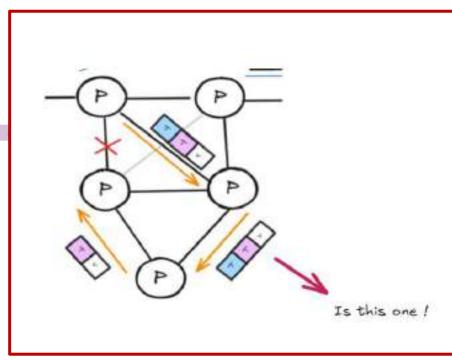
Ethernet II, Src: 50:02:00:0f:00:04 (50:02:00:0f:00:04), Dst: 50:02:00:11:00:04 (50:02:00:11:00:04)

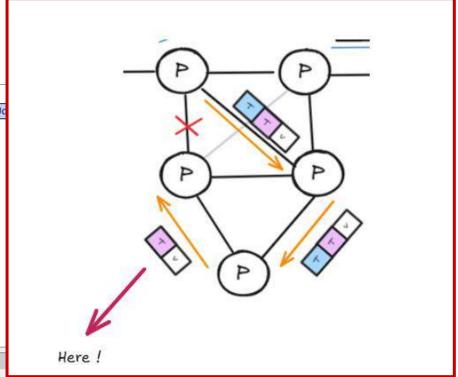

MultiProtocol Label Switching Header, Label: 24012, Exp: 0, S: 0, TTL: 253

MultiProtocol Label Switching Header, Label: 34, Exp: 0, S: 1, TTL: 254


> Internet Protocol Version 4, Src: 192.168.100.100, Dst: 192.168.200.200

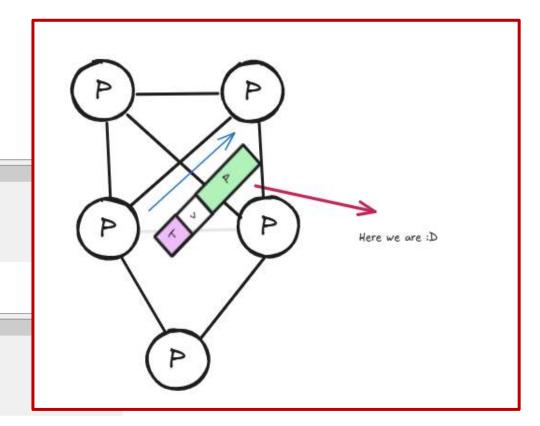
> Internet Control Message Protocol




No.	Time	Source	Destination	Protocol	Length I	info
1	0.000000000	192.168.100.100	192.168.200.200	ICMP	126 E	cho (ping)

- > Frame 1: 126 bytes on wire (1008 bits), 126 bytes captured (1008 bits) on interface 0
- > Ethernet II, Src: 50:02:00:12:00:06 (50:02:00:12:00:06), Dst: 50:02:00:16:00:02 (50:02:00:16:00:02)
- > MultiProtocol Label Switching Header, Label: 24, Exp: 0, S: 0, TTL: 252
- > MultiProtocol Label Switching Header, Label: 24012, Exp: 0, S: 0, TTL: 253
- > MultiProtocol Label Switching Header, Label: 34, Exp: 0, S: 1, TTL: 254
- > Internet Protocol Version 4, Src: 192.168.100.100, Dst: 192.168.200.200
- > Internet Control Message Protocol

N	lo.	Time	Source	Destination	Protocol	Length	Info
	+	291 282.170863356	192.168.100.100	192.168.200.200	ICMP	122	Echo (ping) request id=0x000



- > Frame 291: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) on interface 0
- > Ethernet II, Src: 50:02:00:16:00:00 (50:02:00:16:00:00), Dst: 50:02:00:11:00:06 (50:02:00:11:00:06)
- > MultiProtocol Label Switching Header, Label: 24012, Exp: 0, S: 0, TTL: 251
- > MultiProtocol Label Switching Header, Label: 34, Exp: 0, S: 1, TTL: 254
- > Internet Protocol Version 4, Src: 192.168.100.100, Dst: 192.168.200.200
- > Internet Control Message Protocol

No.	Time	Source	Destination	Protocol	Length Info
_	27 22.966277592	192.168.100.100	192.168.200.200	ICMP	122 Echo (ping) request id=0x000c, seq=0/0, ttl=254 (reply in 28)
→ 1	10 88.280769747	192.168.100.100	192.168.200.200	ICMP	122 Echo (ping) request id=0x000d, seq=0/0, ttl=254 (reply in 111)

- > Frame 110: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) on interface 0
 > Fthernet II Sec. 50.02.00.11.00.05 (50.02.00.11.00.05) Det. 50.02.00.10.00.05 (50.02.00.10.00.05)
- Multi-Durance Labol Suitabian Hadan Labol, 2005 Sun, O. C. O. T.L. 250
- > MultiProtocol Label Switching Header, Label: 24005, Exp: 0, 5: 0, TTL: 250
- > MultiProtocol Label Switching Header, Label: 34, Exp: 0, S: 1, TTL: 254
- > Internet Protocol Version 4, Src: 192.168.100.100, Dst: 192.168.200.200
- > Internet Control Message Protocol
- > Frame 27: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) on interface 0
- > Ethernet II. Src: 50:02:00:11:00:05 (50:02:00:11:00:05), Dst: 50:02:00:10:00:05 (50:02:00:10:00:05)
- > MultiProtocol Label Switching Header, Label: 24005, Exp: 0, S: 0, TTL: 252
- > MultiProtocol Label Switching Header, Label: 34, Exp: 0, S: 1, TTL: 254
- > Internet Protocol Version 4, Src: 192.168.100.100, Dst: 192.168.200.200
- > Internet Control Message Protocol

What can you tell about this?

What can you tell about this?

```
DEC-MAP-(or-OSI?)-Intermediate-System-Hello?
    69 144, 175304...
                                        50:04:00:...
 Frame 90: Packet, 183 bytes on wire (1464 bits), 183 bytes captured (1464 bits) on interface eth0, id 0
IEEE 802.3 Ethernet
  Destination: DEC-MAP-(or-OSI?)-Intermediate-System-Hello? (09:00:2b:00:00:05)
  Source: 50:04:00:03:00:06 (50:04:00:03:00:06)
   Length: 169
   [Stream index: 0]

    Logical-Link Control

 V DSAP: ISO Network Layer (0xfe)

✓ISO 10589 ISIS Link State Protocol Data Unit

    1111 111. = SAP: ISO Network Laver
                                                   PDU length: 166
     .... ...0 = IG Bit: Individual
                                                    Remaining lifetime: 1199
                                                   LSP-ID: 0000.0000.0010.00-00

✓ SSAP: ISO Network Layer (0xfe) 

                                                   Sequence number: 0x00001565
    1111 111. = SAP: ISO Network Laver
                                                   Checksum: 0x8f31 [correct]
                                                    [Checksum Status: Good]
                                                   Type block(0x03): Partition Repair:0, Attached bits:0, Overload bit:0, IS type:3
                                                    Area address(es) (t=1, l=4)
                                                   Protocols supported (t=129, l=1)
   isis
                                                   IP Interface address(es) (t=132, 1=4)
                                                   Extended IP Reachability (t=135, 1=21)
   isis.lsp
                                                   Hostname (t=137, 1=3)
   isis.lsp.rt capable.flag s
                                                   Router Capability (t=242, 1=24)
   isis.lsp.adj_sid.flags
                                                    Extended IS reachability (t=22, 1=68)
```


- IS-IS (Intermediate System to Intermediate System)
 - Link state routing protocol (similar OSPF, popular in SP)
 - Originally defined ISO/CLNS scheme,
 - Runs directly on top of layer-2, no IP header there!,
 - In a nutshell, routers flood Link State PDUs (LSPs again...)
 - They carry information as TLV (Type Length Value) structures, a flexible method to carry information in your protocol,
 - Segment Routing leverages this TLV structure to carry SID (Segment IDentifier) information
 - TLV 135 (sub-TLV 131 containing adjacency SID flags), TLV 242 Router Capability (sub-TLV containing SR support algo, SRGB), TLV 22 (sub-TLV for prefix SID advertisement)
 - Used for Segment Routing MPLS (SR-MPLS)!

Capture - Router capability SR

Router capability

```
Router Capability (t=242, l=24)
                                                              Container TLV
 Type: 242
                                                              Sub-TLV 2
 Length: 24
                                                              SR-MPLS with IPv4 control plane AF
 Router ID: 0x01010101
                                                              Range is SRGB size (labels that can be
  .... ...0 = S bit: False
                                                              allocated)
  .... ..0. = D bit: False
Segment Routing - Capability (t=2, 1=9)
   1... = I flag: IPv4 support: True
                                                              Sub-TLV 1
   .0.. .... = V flag: IPv6 support: False
                                                              The starting label, so SR global block is
   Range: 8000
                                                              16000-23999 (typical one)

    SID/Label (t=1, l=3)
     Label: 16000
                                                              Sub-TLV 19
 Segment Routing - Algorithms (t=19, l=2)
                                                              Algorithm in use
   Algorithm: Shortest Path First (SPF) (0)
   Algorithm: Strict Shortest Path First (SPF) (1)
Node Maximum SID Depth (t=23, 1=2)
                                                              Sub-TLV 23
   MSD Type: Base MPLS Imposition (1)
                                                              How many I can push (ref. label stack)
   MSD Value: 10
```

Capture - IP reachability

IP reachability

```
Ext. IP Reachability: 10.10.10.1/32
                                                                        'Normal' ISIS route
 Metric: 0
 0... = Distribution: Up
 .1.. .... = Sub-TLV: Yes
 ..10 0000 = Prefix Length: 32
 IPv4 prefix: 10.10.10.1
                                                                        Represent Node-SID (identify
 SubCLV Length: 11
                                                                        a device in the topology,
subTLV: Prefix-SID (c=3, 1=6)
                                                                        generally represented by a
   Code: Prefix-SID (3)
                                                                        loopback)
   Length: 6
 Flags: 0x40, Node-SID
    0... .... = Re-advertisement: Not set
                                                                        Index is 0x00000000 = 10,
     .1.. .... = Node-SID: Set
                                                                        hence label derived is 16010.
    ..0. .... = no-PHP: Not set
                                                                        (SRGB base + SID index)
    ...0 .... = Explicit-Null: Not set
     .... 0... = Value: Not set
                                                                        Labels are derived and not
    .... .0.. = Local: Not set
                                                                        signaled with SR contrary to
   Algorithm: Shortest Path First (SPF) (0)
   SID/Label/Index: 0x0000000a
                                                                        other methods.
```

Capture - IS Reachability

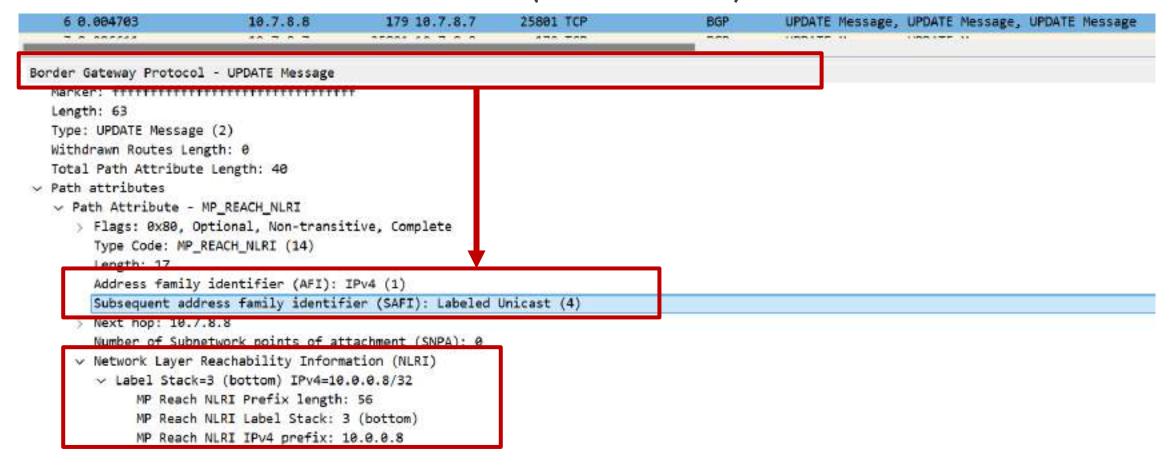
Extend IS reachability

```
Y Extended IS reachability (t=22, 1=68)
   Type: 22
   Length: 68

✓ IS Neighbor: 0000.0000.0004.00

    IS neighbor ID: 0000.0000.0004.00
    Metric: 50
    SubCLV Length: 23
   > subTLV: IPv4 interface address (c=6, 1=4)
   > subTLV: IPv4 neighbor address (c=8, l=4)
   > subTLV: Link Maximum SID Depth (c=15, l=2)
   v subTLV: Adj-SID (c=31, l=5)
      Code: Adj-SID (31)
      Length: 5
    → Flags: 0x30, Value, Local Significance
      Weight: 0x00
      .... 0000 0101 1101 1100 0001 = SID/Label/Index: 24001
 > IS Neighbor: 0000.0000.0003.00
```

Link between routers


Adjacency SID, advertise SID associated with specific link

The significance is local only, meaningful for this router only.

Here the label value is directly included (explicit) and it is taken from SRLB starting at 24000.

BGP IPv4 Labeled Unicast (AFI1/SAFI4)

BGP Labeled Unicast

- With BGP-LU, you can exchange label between BGP speaking routers, without the need for the IGP help
 - it can be used to extend an MPLS network
 - Internally over different IGP islands/areas (OSPF/IS-IS),
 - Externally to another BGP AS (Inter-AS MPLS scenarios)
 - The label information will be attached to the NLRI
 - Use cases:
 - unified MPLS (merging multiple IGP islands),
 - inter-AS MPLS scenarios...
 - Support IPv6 as well (AFI2/SAFI4)

Quick summary until

■ So, what we have seen until now... ©

Layer 2 extension over MPLS

Outer frame (transport)

As said, it is possible to carry frames with MPLS (L2VPN)

```
> Frame 22: Packet, 136 bytes on wire (1088 bits), 136 bytes captured (1088 bits) on interface -, id 0
> Ethernet II, Src: aa:bb:cc:00:02:10, Dst: aa:bb:cc:00:01:10
> MultiProtocol Label Switching Header, Label: 1018, Exp: 0, S: 1, TTL: 252
> PW Ethernet Control Word
> Ethernet II, Src: aa:bb:cc:00:0a:20, Dst: aa:bb:cc:00:09:20
> Internet Protocol Version 4, Src: 172.16.90.10, Dst: 172.16.90.9
> Internet Control Message Protocol
```

Layer operator

 The layer operator (#) can be used to match something against different occurrence of the field at different layer in case of multiple encapsulation

eth.a	ddr#2==aa:bb:cc:00:09:20							
lo.	Time	Source Src	Por	Destination	DstPo	Protocol	MPLS TTL	Protocol
	14 25.810017	172.16.90		172.16.90.9		ICMP	252	ICMP
	15 25.810530	172.16.90.9		172.16.90.10		ICMP	255,255	ICMP
	16 25.812017	172.16.90		172.16.90.9		ICMP	252	ICMP
	17 25.812524	172.16.90.9		172.16.90.10		ICMP	255,255	ICMP
	18 25.814013	172.16.90		172.16.90.9		ICMP	252	ICMP
	19 25.814490	172.16.90.9		172.16.90.10		ICMP	255,255	ICMP
	20 25.815912	172.16.90		172.16.90.9		ICMP	252	ICMP
>	21 25.816407	172.16.90.9		172.16.90.10		ICMP	255,255	ICMP
_	22 25.817858	172.16.90		172.16.90.9		ICMP	252	ICMP
					/			
	me 22: Packet, 136 byte	· · · · · · · · · · · · · · · · · · ·		•	(1088	bits) o	n interface	e -, 1d 0
	ernet II, Src: aa:bb:co							
	tiProtocol Label Switch	ning Header, Label: 10)18. E	xp: 0, 5: 1, 11	L: 252			
	Ethernet Control Word		•					
	ernet II, Src: aa:bb:co							
	ernet Protocol Version		Dst:	1/2.16.90.9				
· Int	ernet Control Message F	https://we	hive.org/web/20	23022	3022751	/http://njrus	mc.net/jobaid/m	

What can you tell about this?

1			Time	Source	SrcPort	Destination	DstPo	Protocol	MPLS TTL	Protoco		Info		
	-	429	357.111252524	1.1.1.1	3503	127.0.0.1	3503	UDP	255	MPLS EC	НО	MPLS	Echo	Request
		430	357.114027557	10.33.3.3	3503	1.1.1.1	3503	UDP		MPLS EC	НО	MPLS	Echo	Reply
		431	357.114882931	1.1.1.1	3503	127.0.0.1	3503	UDP	255	MPLS EC	НО	MPLS	Echo	Request
		432	357.116943444	10.33.3.3	3503	1.1.1.1	3503	UDP		MPLS EC	НО	MPLS	Echo	Reply
		433	357.117564379	1.1.1.1	3503	127.0.0.1	3503	UDP	255	MPLS EC	НО	MPLS	Echo	Request
		434	357.119299462	10.33.3.3	3503	1.1.1.1	3503	UDP		MPLS EC	НО	MPLS	Echo	Reply
		435	357.120293907	1.1.1.1	3503	127.0.0.1	3503	UDP	255	MPLS EC	НО	MPLS	Echo	Request
		436	357.122001528	10.33.3.3	3503	1.1.1.1	3503	UDP		MPLS EC	НО	MPLS	Echo	Reply
		437	357.122681082	1.1.1.1	3503	127.0.0.1	3503	UDP	255	MPLS EC	НО	MPLS	Echo	Request
		438	357.124433839	10.33.3.3	3503	1.1.1.1	3503	UDP		MPLS EC	НО	MPLS	Echo	Reply
		582	475.759615024	1.1.1.1	3503	127.0.0.1	3503	UDP	255	MPLS EC	НО	MPLS	Echo	Request
		583	475.764924770	10.33.3.3	3503	1.1.1.1	3503	UDP		MPLS EC	НО	MPLS	Echo	Reply

udp.port == 3503

What can you tell about this?

Time	Source	SrcPort Destination	DstPo Protocol	MPLS TTL Protocol	Info
625 507.558757732	1.1.1.1	3503 127.0.0.1	3503 UDP	1 MPLS ECHO	MPLS Echo Request
626 507.565593840	10.1.11.11	3503 1.1.1.1	3503 UDP	MPLS ECHO	MPLS Echo Reply
627 507.571727781	1.1.1.1	3503 127.0.0.1	3503 UDP	2 MPLS ECHO	MPLS Echo Request
629 509.422683943	1.1.1.1	3503 127.0.0.1	3503 UDP	3 MPLS ECHO	MPLS Echo Request
630 509.427579862	10.44.4.4	3503 1.1.1.1	3503 UDP	MPLS ECHO	MPLS Echo Reply
631 509.428961753	1.1.1.1	3503 127.0.0.1	3503 UDP	4 MPLS ECHO	MPLS Echo Request
636 511.421736702	1.1.1.1	3503 127.0.0.1	3503 UDP	5 MPLS ECHO	MPLS Echo Request
638 511.430956700	10.22.33.33	3503 1.1.1.1	3503 UDP	MPLS ECHO	MPLS Echo Reply
639 511.432112517	1.1.1.1	3503 127.0.0.1	3503 UDP	6 MPLS ECHO	MPLS Echo Request
640 511.436788765	10.33.3.3	3503 1.1.1.1	3503 UDP	MPLS ECHO	MPLS Echo Reply

udp.port == 3503

- MPLS OAM (Operations, Administration, Maintenance) is used to detect operational failures but can also be leveraged for performance measurements, accounting, and service monitoring (RFC4377, RFC4379, RFC6669, and more)
 - Identify control and data plane defects,
 - Identify LSP defects,
 - Get path information,
 - Get SLA information,

MPLS LSP ping & MPLS LSP traceroute utilities are generally found on most network operating system supporting MPLS.

MPLS ping and traceroute utilities rely on the same OAM messages

```
> Frame 586: Packet, 114 bytes on wire (912 bits), 114 bytes captured (912 bits) on interface eth0, id 0
> Ethernet II, Src: 50:02:00:15:00:02 (50:02:00:15:00:02), Dst: 50:02:00:0f:00:06 (50:02:00:0f:00:06)
MultiProtocol Label Switching Header, Label: 24001, Exp: 0, S: 1, TTL: 255
 Internet Protocol Version 4, Src: 1.1.1.1, Dst: 127.0.0.1
                                                                                             MPLS header (TTL set to
    0100 .... = Version: 4
     .... 0110 = Header Length: 24 bytes (6)
                                                                                             255 in case of ping)
  > Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 96
                                                                                     IP header with destination
    Identification: 0x641f (25631)
  > 010. .... = Flags: 0x2, Don't fragment
                                                                                     address set to 127.0.0.x
    ...0 0000 0000 0000 = Fragment Offset: 0
    Time to Live: 1
    Protocol: UDP (17)
                                                                                      Options Router Alert set to
    Header Checksum: 0xff66 [validation disabled]
                                                                                      punt the packet to control
     [Header checksum status: Unverified]
                                                                                      plane
    Source Address: 1.1.1.1
    Destination Address: 127.0.0.1

∨ Options: (4 bytes), Router Alert
     > IP Option - Router Alert (4 bytes): Router shall examine packet (0)
```


MPLS OAM data inside UDP/3503 datagram

```
User Datagram Protocol, Src Port: 3503, Dst Port: 3503
Multiprotocol Label Switching Echo
  Version: 1
> Global Flags: 0x0000
  Message Type: MPLS Echo Request (1)
                                                                                        UDP port 3503 reserved
   Reply Mode: Reply via an IPv4/IPv6 UDP packet (2)
                                                                                        for MPLS Echo
   Return Code: No return code (0)
  Return Subcode: 0
  Sender's Handle: 0xf79e33f1
                                                                                MPLS OAM payload
  Sequence Number: 3
                                                                                 carrying all the information
  Timestamp Sent: Nov 4, 2025 21:07:49.711999999 UTC
                                                                                that will be interpreted
   Timestamp Received: Jan 1, 1970 00:00:00.000000000 UTC
Vendor Private
     Type: Vendor Private (64512)
     Length: 12
     Vendor Id: ciscoSystems (9)
     Value: 0001000400000004

√ Target FEC Stack

     Type: Target FEC Stack (1)
     Length: 12
   > FEC Element 1: Generic IPv4 prefix
```


 MPLS traceroute will just send the same MPLS Echo Request, but with incremented MPLS TTL values

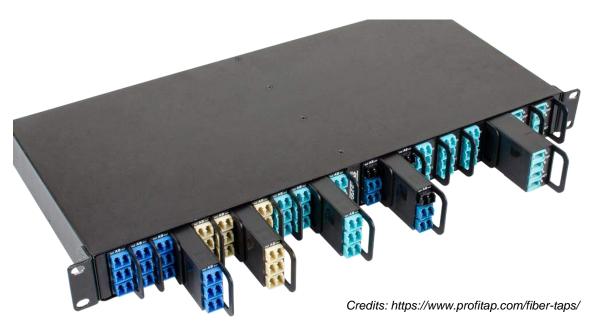
625 507.558757732	1.1.1.1	3503 127.0.0.1	3503 UDP	1 MPLS ECHO MPLS Echo Request
626 507.565593840	10.1.11.11	3503 1.1.1.1	3503 UDP	NPLS ECHO MPLS Echo Reply
627 507.571727781	1.1.1.1	3503 127.0.0.1	3503 UDP	2 MPLS ECHO MPLS Echo Request
629 509.422683943	1.1.1.1	3503 127.0.0.1	3503 UDP	3 MPLS ECHO MPLS Echo Request
630 509.427579862	10.44.4.4	3503 1.1.1.1	3503 UDP	MPLS ECHO MPLS Echo Reply
631 509.428961753	1.1.1.1	3503 127.0.0.1	3503 UDP	4 MPLS ECHO MPLS Echo Request
636 511.421736702	1.1.1.1	3503 127.0.0.1	3503 UDP	5 MPLS ECHO MPLS Echo Request
638 511.430956700	10.22.33.33	3503 1.1.1.1	3503 UDP	NPLS ECHO MPLS Echo Reply
639 511.432112517	1.1.1.1	3503 127.0.0.1	3503 UDP	6 MPLS ECHO MPLS Echo Request
640 511.436788765	10.33.3.3	3503 1.1.1.1	3503 UDP	MPLS ECHO MPLS Echo Reply

More here: https://www.cisco.com/c/en/us/support/docs/multiprotocol-label-switching-mpls/mpls/200510-Trace-route-in-MPLS-network.html

About TTL

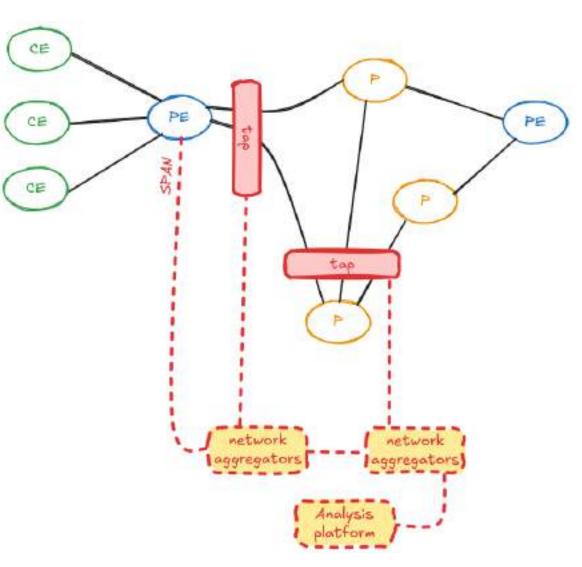
- Speaking about TTL,
 - Routers can be configured in two ways regarding TTL
 - RFC3443
 - Either the IP TTL is copied inside the MPLS TTL at the ingress point, and the MPLS TTL (that has been decremented inside the carrier's network) is copied back at the egress point the IP TTL (sometimes referred as uniform mode)
 - Either the IP TTL is left untouched, the label is pushed with TTL set to 255 and get decremented inside the carrier backbone. This later option will hide part of the service provider network (sometimes referred as pipe model)

Common issues



Some issues

- Label distribution problems
 - IGP/LDP not sync'ed (link in IGP up but no LDP session),
 - Label exchange issues (BGP,IGP...),
 - Configuration and consistency issues across the network,
 - Defects in network operating system daemon/diagnosing interop issues,
- Data-plane related issues
 - Label missing in LFIB, label withdrawn but not reinstalled (bug...)
 - Inconsistent platform support for implicit-null / explicit-null
 - Missing route recursion resolution
 - Defect in ASIC programming (bug or hardware limitation)
 - MTU... ③



- As always, capturing packets in large-scale, heavy traffic environments presents a unique set of challenges
 - Variety of links (type of media),
 - Variety of bandwidths (10G, 40G, 100G, more...),
 - Distributed architectures with many paths,
 - Potential impact on production systems,
 - Variety of capture points,
 - Time synchronization,

- In dense environments, a specific network might be built to handle packet capture traffic, and its distribution to analysis tools
 - This network can aggregate multiple sources like on-the-box *SPAN or network taps / packet brokers
 - Capture filters may be leveraged early on to reduce the volume of data captured (BPF-based filters, for example)
 - NIC card bandwidth inside the capture infrastructure needs to be consistent

- In the end, why do we do that?
 - Learning and experiments (NOS configuration and behaviors, multivendor verifications...)
 - Traffic analytics, application performance/troubleshooting to some extent,
 - IT security and incident response (sending traffic for analysis to IDS/IPS,...)
 - Forensic, lawful interception may be,

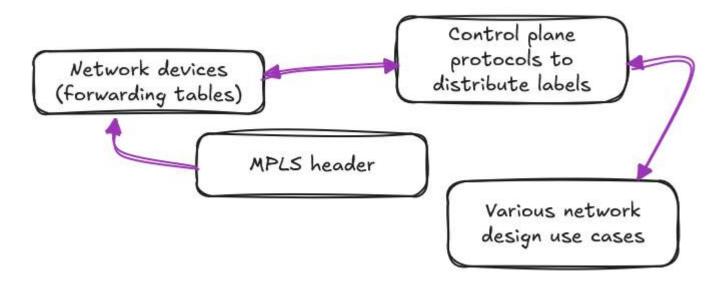
Depending on the objectives, the toolset in place will be adjusted.

- Common issues that need to be solved
 - Traffic volume, filters need to be applied,
 - Privacy/confidentiality and storage capacity, packet payloads may need to be chopped,
 - Timestamps may confuse performance analysis; some packet brokers can perform timestamping,
 - Packet encapsulation needs to be removed so the end system get the information it expects (header stripping),
 - Encryption,

Wireshark capture filters

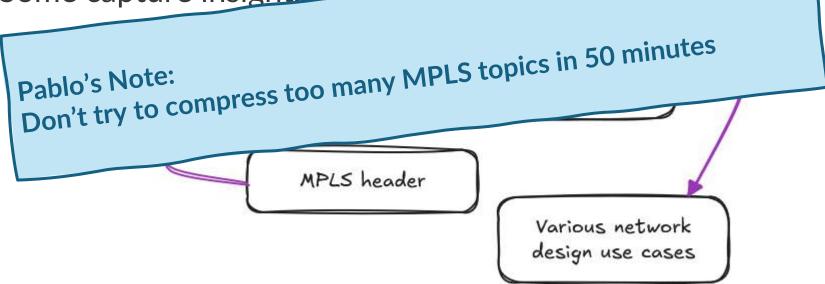
- Capture filters in wireshark
 - Set before capturing, allow for precise capturing, removing potential unnecessary traffic,
 - Cannot be changed once capture is started,
 - Be careful, some important may be omitted...
 - Capture filters leverage libpcap pcap-filters (tcpdump syntax for those familiar), they are different than wireshark display filters

Capture filter for selected interfaces: | host 10.1.1.1



- https://wiki.wireshark.org/CaptureFilters
- https://sharkfest.wireshark.org/retrospective/sfus/presentations16/1 3.pdf

Key take-aways


- You learned,
 - The principle of label-based forwarding,
 - The MPLS header,
 - New acronyms,
 - How the label information is exchanged between routers,
 - What are MPLS VPNs and the label stack
 - Some capture insights, and tips hopefully

Key take-aways

- You learned,
 - The principle of label-based forwarding,
 - The MPLS header,
 - New acronyms,
 - How the label information is exchanged between routers,
 - What are MPLS VPNs and the label stack
 - Some capture insights and time

Questions?

#sf25eu

We kindly ask for your feedback!

- Thank you very much for attending
- Your feedback is welcomed!

https://conference.wireshark.org/sharkfest-25europe-2025/talk/K3QZUJ/feedback/

