
SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

• B-2 Analyzing TCP/IP Networks with Wireshark
• June 15, 2010

Ray Tompkins
Founder of Gearbit | www.Gearbit.com

SHARKFEST ‘10
Stanford University
June 14-17, 2010

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP

In this session we will examine the details of TCP,
How it Works:

how it sets up the connection,

how it keeps track of the data,

how it manages and controls the throughput,

how it recovers lost data,

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Overview

Connection Oriented:

Before data can be transferred, a TCP connection must be established.

Full Duplex:

Every TCP conversation has two logical pipes; an outgoing and incoming pipe.

Reliable:

All data is sequenced and lost packets are detected and retransmitted.

Byte Stream:

TCP views data transmitted over a pipe as a continuous stream of Bytes.

Sender and Receiver Flow Control:

A TCP Window is used to avoid sending too much data. This will be discussed in
more detail in a later slide.

Segmentation:

TCP will segment any application data so that it will fit within the IP MTU.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Header
Source Port: 2 Bytes to identify the source application layer protocol.

Destination Port: 2 Bytes to identify the destination application layer protocol.

Sequence Number: 4 Bytes. Indicates the outgoing bytes stream sequence
number. When no data is to be sent the sequence number will be set to the
next octet.

Acknowledgement Number: 4 Bytes. Provides a positive acknowledgement of all
octets in the incoming byte stream.

Data Offset: 4 bits. Indicates where the TCP segment data begins.

Reserved: 6 bits. For future use.

Flags: 6 bits. Indicates one of six different flags.

Window: 2 Bytes. The number of Bytes available space in the receive buffer of
the sender.

Checksum: 2 Bytes. 2 Byte field to provide a bit level integrity check.

Urgent Pointer: 2 Bytes. Indicates the location of urgent data in the segment.

Options: Indicates additional TCP Options.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP/IP Protocol Suite

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Three-way Handshake

The delta value between frames 1 and 2 can be used as a TCP transport connect baseline value.

Other important information gathered from this handshake:
• Window Size

• SACK

• Maximum Segment Size

• Window Scale Option value

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Close, FIN, ACK, FIN

•

Packet #28 through #31 reveals the FIN, ACK, FIN that closes the TCP session

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

SYN, RST

• This capture shows that the server is responding with a reset (RST).

• This indicates that the destination server is receiving the packet but
there is no application bound to that port.

• Make sure that your application is bound to the correct port on the
correct IP address.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Flag Information

Urgent (URG):
Indicates that the segment portion contains urgent data. The urgent data is found using the

Urgent Pointer Field.

Acknowledgment (ACK):
The ACK flag is always set, except during the first phase of a TCP connection.

Push Function (PSH):
Indicates that the contents of the receive buffer should be immediately passed to the application

layer.

Reset The Connection (RST):
Indicates the connection is to be aborted. (abnormal session connection).

Synchronize Sequence Number (SYN):
Indicates that this segment contains an Initial Sequence Number. This flag counts as 1 Byte.

Finish Sending Data (FIN):
Indicates that the sender is finished sending data. When a FIN is transmitted, the receiver will

respond with a FIN to close down the connection. This flag counts as 1 Byte.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Performance

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Algorithms:

• Slow Start - Every ack increases the sender’s window
(congestion window) size by 1

• Congestion Avoidance - Reducing sender’s window size by
half at experience of loss, and increase the sender’s
window at the rate of about one packet per RTT

• Fast Retransmit - Don’t wait for retransmit timer to go off,
retransmit packet if 3 duplicate acks received

• Fast Recovery - Since duplicate ack came through, one
packet has left the wire. Perform congestion avoidance,
don’t jump down to slow start

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Slow Start Algorithm & Congestion Avoidance

• When a connection is established, TCP ‘tests the waters’ at first to assess the bandwidth of the
connection and to avoid overflowing the receiving host, any other devices or links in the path.

• When a connection is successfully opened, only one packet is sent until an ACK is received.

• This continues until the amount of data being sent per burst reaches the size of the receive window on
the remote host.

• At that point, the slow start algorithm is no longer in use and flow control is governed by the receive
window. However, at any time during transmission, congestion could still occur on a connection. If this
happens (evidenced by the need to retransmit), a congestion avoidance algorithm is used to reduce the
send window size temporarily, and to grow it back towards the receive window size.

• Slow start and congestion avoidance are discussed in RFC 2001.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

t=0r

cwnd=1

t=1r

cwnd=2

t=2r

cwnd=4

t=3r

cwnd=8

Slow Start
Packet
Ack

pkt 0

ack 0

pkts 1,2

acks 1,2

pkts3,4,5,6

New Congestion Window = Old Congestion Window + Number ACKs/ Congestion
Window

Sender Receiver

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

t=xr

cwnd=4

t=(x+1)r

cwnd=5

t=(x+2)r

cwnd=6

t=(x+3)r

cwnd=7

Congestion Avoidance

TCP
Receiver

TCP
Sender

New Congestion Window = Old Congestion Window + Number ACKs/ Congestion Window

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Retransmission Behavior

• TCP starts a retransmission timer when each outbound segment is handed down
to IP.

• If no acknowledgment has been received for the data in a given segment before
the timer expires, then the segment is retransmitted.

• For new connection requests, the retransmission timer is initialized to 3 seconds,
and the request (SYN) is resent up to TcpMaxConnectRetransmissions times.
– (the default for Windows 2000 & XP is 2 times, Windows NT 4.0 is 3 times).

• On existing connections, the number of retransmissions is controlled by the
TcpMaxDataRetransmissions registry parameter (5 by default).

• The retransmission time-out is adjusted "on the fly" to match the characteristics of
the connection using Smoothed Round Trip Time (SRTT) calculations as described
in RFC 793. The timer for a given segment is doubled after each retransmission of
that segment. Using this algorithm, TCP tunes itself to the "normal" delay of a
connection. TCP connections over high-delay links will take much longer to time
out than those over low-delay links.

• By default, Windows XP resends a segment if it receives three ACKs for the same
sequence number and that sequence number lags the current one. This is
controllable with the TcpMaxDupAcks registry parameter.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Fast Retransmit Behavior
• There are some circumstances under which TCP will retransmit data prior to the

retransmission timer expiring. The most common of these occurs due to a feature known as
fast retransmit.

• When a receiver that supports fast retransmit receives data with a sequence number beyond
the current expected one, then it is likely that some data was dropped. To help make the
sender aware of this event, the receiver immediately sends an ACK, with the ACK number set
to the sequence number that it was expecting.

• It will continue to do this for each additional TCP segment that arrives containing data
subsequent to the missing data in the incoming stream. When the sender starts to receive a
stream of ACKs that are acknowledging the same sequence number, and that sequence
number is earlier than the current sequence number being sent, it can infer that a segment
(or more) must have been dropped. Senders that support the fast retransmit algorithm will
immediately resend the segment that the receiver is expecting to fill in the gap in the data,
without waiting for the retransmission timer to expire for that segment. This optimization
greatly improves performance in a lousy network environment. By default, Windows XP
resends a segment if it receives three ACKs for the same sequence number, and that
sequence number lags the current one. This is controllable with the TcpMaxDupAcks registry
parameter.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

t=xr

t=(x+1)r

Fast Retransmit

Packet
ACK

3 duplicate ACKs

DROPED

Fast

Retransmission

TCP
Sender TCP

Receiver

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Selective Acknowledgements (SACKS)

• Selective Acknowledgment (SACK) is a mechanism that includes a retransmission algorithm which helps
overcome weak links on the TCP/IP stack. The selective acknowledgment extension uses two TCP options.

– The first is a two-byte enabling option, SACK-permitted, which can be sent in a SYN segment to
indicate that the SACK option can be used once the connection is established.

– The second option is the SACK option itself, which can be sent over an established connection once
both the sender and the receiver have successfully negotiated the SACK-permitted option. Whenever
there is loss of data, the data receiver can send the SACK option to acknowledge the out-of-order
segments. The data blocks are identified using the sequence number at the start and at the end of
that block of data. This is also known as the left and right edge of the block of data.

• The Novell and Microsoft TCP/IP stack supports SACK per RFC 1323. The use of SACK is helpful in a scenario
where there is a heavy flow of traffic and some packets are getting lost. With SACK, the sender doesn't
have to resend all the packets that were sent after one lost packet. He can selectively resend only the
packets that were lost. SACK has no impact on a LAN connection's performance.

• SACK is especially important for connections that use large TCP window sizes. Prior to SACK, a receiver
could only acknowledge the latest sequence number of a contiguous data stream that had been received,
or the "left edge" of the receive window. With SACK enabled, the receiver continues to use the ACK
number to acknowledge the left edge of the receive window, but it can also acknowledge other blocks of
received data individually.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Selective Acknowledgments (SACK)
100 299

500300 699

699300 500 900 1099

Se
n

d
e

r

R
e
ce

ive
r

699300 500 900 1099

699300 500 900 1099

700300 500 900 1099

1100

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Keep-Alive Messages

• A TCP keep-alive packet is simply an ACK with the sequence number set to one less than the
current sequence number for the connection.

• A host receiving one of these ACKs will respond with an ACK for the current sequence
number.

• Keep-Alives can be used to verify that the computer at the remote end of a connection is still
available.

• TCP keep-Alives can be sent once every KeepAliveTime (defaults to 7,200,000 milliseconds or
two hours), if no other data or higher level keep-alives have been carried over the TCP
connection. If there is no response to a keep-alive, it is repeated once every
KeepAliveInterval seconds. KeepAliveInterval defaults to 1 second.

• NetBT connections, such as those used by many Microsoft networking components, send
NetBIOS keep-alives more frequently, so normally no TCP keep-alives will be sent on a
NetBIOS connection.

• TCP keep-alives are disabled by default, but Windows Sockets applications can use the
SetSockOpt function to enable them.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Window And Timers

• Because TCP guarantees delivery and reliability of traffic flow, the window cannot
slide past any data that has not been acknowledged. If the window cannot slide
beyond a packet of data, no more data beyond the window is transmitted, TCP
eventually has to shut down the session, and the communication fails.

• Each machine is therefore instructed to wait a certain amount of time before
either retransmitting data or sending acknowledgments for packets that arrive out
of sequence. Each window is given a timer:

– the send window has the Retransmit Timer

– the receive window has the Delayed Acknowledgment Timer

• These timers help define what to do when communication isn’t flowing very
smoothly

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Sending Window Timer
• In the sending window, a Retransmit Timer is set for each packet, specifying how long to wait for an

acknowledgment before making the assumption that the packet did not get to its destination. After this
timer has expired, the send window is instructed to resend the packet and wait twice as long as the time
set on the preceding timer. The default starting point for this timer is approximately 3 seconds but is
usually reduced to less than a second almost immediately. Each time an acknowledgment is not received,
the Retransmit Timer doubles. For instance, if the Retransmit Timer started at approximately 1 second,
the second Retransmit Timer is set for 2 seconds, the third for 4 seconds, the fourth, 8 seconds, up to a
fifth attempt that waits 16 seconds. The number of attempts can be altered in the Registry, but if after
these attempts an acknowledgment still cannot be received, the TCP session is closed and errors are
reported to the application.

• Illustrates the resending of data after the first Retransmit Timer has expired.

• The Registry location for changing the number of times to retry a transmission is in the following subkey:

– HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

• The Registry parameter and value is:

– TcpMaxDataRetransmissions (REG_DWORD)

• The default value is 5.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Receive Window Timer

• In the receiving window, a Delayed Acknowledgment Timer is set for those packets
that arrive out of order. Remember, by default an acknowledgment is sent for
every two sequenced packets, starting from the left-hand side of the window. If
packets arrive out of order (if, for instance, 1 and 3 arrive but 2 is missing), an
acknowledgment for two sequenced packets is not possible. When packets arrive
out of order, a Delayed Acknowledgment Timer is set on the first packet in the pair.
In the parenthetical example, a Timer is set on packet number 1.

• The Delayed Acknowledgment Timer is hard-coded for 200 milliseconds, or 1 /5
the Retransmit Timer. If packet 2 does not show up before the Delayed
Acknowledgment Timer expires, an acknowledgment for packet 1, and only packet
1, is sent. No other acknowledgments are sent, including those for packets 3
through 8 that might have appeared. Until packet 2 arrives, the other packets are
considered interesting, but useless. As data is acknowledged and passed to the
Application layer, the receive window slides to the right, enabling more data to be
received. Again though, if a packet doesn’t show up, the window is not enabled to
slide past it.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Configuring Delayed Acknowledgments

• A problem may occur with message block (SMB) write operations to a Windows XP - based domain controller and
may experience a delay of up to 200 milliseconds between file copies.

• If you review a trace of the problem, you notice that the delay occurs after the client sends the server an SMB
Notify Change command with the FID entry that matches the FID entry of the target folder.

• Windows Explorer posts a Notify Change request on the network share, which asks to be notified if something
changes in the folder that appears in the right pane of Windows Explorer. If a domain controller receives the
Notify Change request, it does not respond to it immediately; it does not send packets for up to 200 milliseconds.
At that point, a simple Transmission Control Protocol (TCP) acknowledgement (ACK) packet is sent and the file
operation resumes as usual.

• This behavior is a result of the interaction between two core networking components of Windows XP, TCP
delayed ACKs, and thread prioritization on domain controllers.

• The Windows XP-based domain controller, you can edit the TcpDelAckTicks registry value to adjust the TCP
delayed ACK timer. If you change the TCP delayed ACK timer to a lower value, the server sends an ACK packet
more frequently but at shorter intervals.

1. Start Registry Editor (Regedt32.exe).

2. Locate and click the following key in the registry, where Adapter GUID is the globally unique identifier (GUID)
for the network adapter that connects to the clients:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\Adapter GUID

3. On the Edit menu, click Add Value, and then add the following registry value:

Value name: TcpDelAckTicks

Data type: REG_DWORD

Value data: You can set this value to a range from 0 to 6. The default setting is 2 (200 milliseconds).

4. Quit Registry Editor.

5. Restart Windows for this change to take effect.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Window Information

• The Expert reports “Window Frozen” statistics.
– Look to see if one particular device is freezing when the window is small. Why is it unable to

use a reasonable size window?

• In the “Silly Window Syndrome,” the receiver keeps advertising a small window
and sender keeps filling it with small packets.
– Can you configure it to use a larger size?

• “Zero Window” symptom alerts you to stations that have closed their window.
– Don’t worry if the window closes briefly at the beginning of a connection, then opens and

maintains a reasonable size.
– Do worry if a host frequently closes the window for long periods of time.
– Do you see the window gradually growing smaller before it closes?

• A TCP MAY keep its offered receive window closed indefinitely. As long as the
receiving TCP continues to send acknowledgments in response to the probe
segments, the sending TCP MUST allow the connection to stay open.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Window Scaling Option
• The computer will send a packet offering the Window Scale option, with a scaling factor of up to 5. If the

target computer responds, accepting the Window Scale option in the SYN-ACK, then it is understood that
any TCP window advertised by this computer needs to be left-shifted 5 bits from this point onward (the
SYN itself is not scaled).

• The Large Windows option defines an implicit scale factor, which is used to multiply the window size value
found in a TCP header to obtain the true window size. The TCP/IP stack supports a maximum window size
of 1 GB. This Large Window option is negotiated when the TCP connection is established.

• The TCP Large Windows size is useful on fast networks (such as Gigabit Ethernet) with large round-trip
times. To understand how this works, think of a water hose. To achieve maximum water flow, the hose
should be full. As the hose increases in diameter and length, the volume of water necessary to keep it full
increases. In networks, diameter equates to bandwidth, length is measured as round-trip time, and the
volume of water is analogous to the TCP window size. On fast networks with large round-trip times, the
TCP window size must be increased to achieve maximum TCP bandwidth.

• TCP performance depends not upon the transfer rate itself, but rather upon the product of the transfer
rate and the round-trip delay. This "bandwidth delay product" measures the amount of data that would
fill the pipe. It is the buffer space required at the sender and the receiver to obtain maximum throughput
on the TCP connection over the path-in other words, the amount of unacknowledged data that TCP must
handle in order to keep the pipeline full. So on fast networks with large round-trip times, having a large
TCP Window helps by allowing for a greater amount of unacknowledged data.

• Windows XP uses window scaling automatically if the TcpWindowSize is set to a value greater than 64 KB,
and the Tcp1323Opts registry parameter is set appropriately.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Window Scaling Option Reference
Chart

Scale Factor Scale Value Initial Window Window Scaled

0 1 65535 or less 65535 or less

1 2 65535 131,070

2 4 65535 262,140

3 8 65535 524,280

4 16 65535 1,048,560

5 32 65535 2,097,120

6 64 65535 4,194,240

7 128 65535 8,388,480

8 256 65535 16,776,960

9 512 65535 33,553,920

10 1024 65535 67,107,840

11 2048 65535 134,215,680

12 4096 65535
268,431,360

13 8192 65535
536,862,720

14 16384 65535
1,073,725,440

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Protection Against Wrapped Sequence Numbers (PAWS)

• The TCP sequence number field is limited to 32 bits, which limits the
number of sequence numbers available. With high capacity networks and
a large data transfer, it is possible to wrap sequence numbers before a
packet traverses the network.

• If sending data on a 1 Gigabit per second (Gbps) network, the sequence
numbers could wrap in as little as 34 seconds. If a packet is delayed, a
different packet could potentially exist with the same sequence number.

• To avoid confusion in the event of duplicate sequence numbers, the TCP
timestamp is used as an extension to the sequence number. Packets have
current and progressing time stamps. An old packet has an older time
stamp and is discarded.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Zero Window Example

• When you get into a Zero Window situation, it
is quite normal to see the transmitting station
send 1 byte packets.

• These packets are interpreted within
‘retransmissions’ by most analyzers.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Window XP Information

• The Windows XP TCP/IP stack was designed to tune itself in most environments and uses larger default
window sizes than earlier versions. Instead of using a hard-coded default receive window size, TCP adjusts
to even increments of the maximum segment size (MSS) negotiated during connection setup. Matching
the receive window to even increments of the MSS increases the percentage of full-sized TCP segments
used during bulk data transmission.

• The receive window size defaults to a value calculated as follows:

– The first connection request sent to a remote host advertises a receive window size of 16 KB (16,384
bytes).

– Upon establishing the connection, the receive window size is rounded up to an increment of the
maximum TCP segment size (MSS) that was negotiated during connection setup.

– If that is not at least four times the MSS, it is adjusted to 4 * MSS, with a maximum size of 64 KB
unless a window scaling option (RFC 1323) is in effect.

• For Ethernet, the window is normally set to 17,520 bytes (16 KB rounded up to twelve 1460-byte
segments.) There are two methods for setting the receive window size to specific values:

– The TcpWindowSize registry parameter

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Silly Window Syndrome (SWS)

• Silly Window Syndrome is described in RFC 1122.

• In brief, SWS is caused by the receiver advancing the right window edge whenever it has any new buffer
space available to receive data and by the sender using any incremental window, no matter how small, to
send more data.

• The result can be a stable pattern of sending tiny data segments, even though both sender and receiver
have a large total buffer space for the connection.

• Windows XP TCP/IP implements SWS avoidance as specified in RFC 1122 by not sending more data until
there is a sufficient window size advertised by the receiving end to send a full TCP segment. It also
implements SWS on the receive end of a connection by not opening the receive window in increments of
less than a TCP segment.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Nagle Algorithm

• Windows NT and Windows XP TCP/IP implement the Nagle algorithm described in RFC 896.

• The purpose of this algorithm is to reduce the number of very small segments sent, especially
on high-delay (remote) links.

• The Nagle algorithm allows only one small segment to be outstanding at a time without
acknowledgment. If more small segments are generated while awaiting the ACK for the first
one, then these segments are combined into one larger segment.

• Any full-sized segment is always transmitted immediately, assuming there is a sufficient
receive window available.

• The Nagle algorithm is effective in reducing the number of packets sent by interactive
applications, such as Telnet, especially over slow links.

• Windows Sockets applications can disable the Nagle algorithm for their connections by
setting the TCP_NODELAY socket option. However, this practice should be avoided unless
absolutely necessary as it increases network utilization. Some network applications may not
perform well if their design does not take into account the effects of transmitting large
numbers of small packets and the Nagle algorithm.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Delayed ACK

• A TCP SHOULD implement a delayed ACK, but an ACK should not be excessively delayed; in
particular, the delay MUST be less than 0.5 seconds, and in a stream of full-sized segments
there SHOULD be an ACK for at least every second segment.

• As specified in RFC 1122, TCP uses delayed acknowledgments (ACKs) to reduce the number of
packets sent on the media. The Microsoft TCP/IP stack takes a common approach to
implementing delayed ACKs. As data is received by TCP on a connection, it only sends an
acknowledgment back if one of the following conditions is met:

– No ACK was sent for the previous segment received.

– A segment is received, but no other segment arrives within 200 milliseconds for that
connection.

• A delayed ACK gives the application an opportunity to update the window and perhaps to
send an immediate response. In particular, in the case of character-mode remote login, a
delayed ACK can reduce the number of segments sent by the server by a factor of 3 (ACK,
window update, and echo character all combined in one segment).

• In summary, normally an ACK is sent for every other TCP segment received on a connection,
unless the delayed ACK timer (200 milliseconds) expires. The delayed ACK timer can be
adjusted through the TcpDelAckTicks registry parameter, which is new in Windows XP.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP TIME-WAIT Delay

• When a TCP connection is closed, the socket-pair is placed into a state
known as TIME-WAIT so that a new connection will not use the same
protocol, source IP address, destination IP address, source port, and
destination port until enough time has passed to ensure that any
segments that may have been misrouted or delayed will not be delivered
unexpectedly.

• The length of time that the socket-pair should not be re-used is specified
by RFC 793 as "2MSL" (two maximum segment lifetimes) or 4 minutes.
This is the default setting for Windows NT and Windows XP. However,
with this default setting, some network applications that perform many
outbound connections in a short time may use up all available ports
before the ports can be recycled.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TCP Push Bit Interpretation

• By default, Windows XP TCP/IP completes a recv() call when one of the following conditions is
met:

– Data arrives with the PUSH bit set.

– The user recv() buffer is full.

– 0.5 seconds have elapsed since any data has arrived.

– If a client application is run on a computer with a TCP/IP implementation that does not
set the push bit on send operations, response delays may result. It's best to correct this
on the client, however a configuration parameter (IgnorePushBitOnReceives) was added
to Afd.sys to force it to treat all arriving packets as though the push bit were set. This
parameter was new in Windows NT 4.0 and is also supported in Windows XP.

TCP Forced ACK

By default, Microsoft Windows TCP/IP will
acknowledge every second packet.

How to contact us at gearbit

Ray Tompkins

sales@gearbit.com
www.gearbit.com

Copy rights gearbit 2010

mailto:info09@gearbit.com
mailto:info09@gearbit.com
http://www.gearbit.com/

