SHARKFEST '12

Wireshark Developer and User Conference

Rolf Leutert

Network Expert & Trainer | Leutert NetServices | Switzerland

Tuning Win7 Using Wireshark's TCP Stream Graph

© 2012 Leutert NetServices

Case Study

- Customer is distributing Software over night to remote office in Asia
- But the process does not finish before local business hours starts
- Customer is paying for a WAN bandwidth of 45 Mbps
- He calculates an available throughput of only around 2 Mbps
- Does the bandwidth provider limit the rate?
- Is the server or the client not performing?
- Analyze the performance of a TCP session using TCP Stream graph

TCP Extension for High performance

- TCP was designed to operate in the range
 100bps to 10Mbps and delays of 1ms to 100sec.
- The introduction of fiber optics is resulting in ever higher transmission speeds paths and are moving out of the domain for which TCP was originally engineered.

- TCP performance depends not upon the transfer rate itself, but rather upon the product of the transfer rate and the round-trip delay. If the bandwidth x delay product is large, TCP throughput will be limited.
- Internet path operating in this region are called "long, fat pipe", and a network containing this path as an "LFN" (pronounced "elephan(t)").

,Long - Fat - Pipe' Problems

Maximum standard TCP window size is 65536 Bytes (=2¹⁶)

,Long - Fat - Pipe' Problems

- High-capacity packet satellite channels are LFN's. Delay 4 x 35'800 km = 470ms Round Trip Time
- Terrestrial fiber-optical paths will also fall into the LFN class

- There are three fundamental performance problems with the current TCP over LFN paths:
 - Window Size Limit (max 65k bytes) → Remedy: TCP option "Window scale"
 - Recovery from Segment Losses → Remedy: TCP option "Selective acknowledges"
 - Round-Trip Measurement → Remedy: TCP option "Time stamp"

- TCP Window Size of 65'535 Bytes is too small.
- A multiplier Skaling Factor resolves this limitation.
- Scaling Factor S is negotiated at TCP setup.
- Each end can offer an individual Scaling Factor.
- The value for the Scaling Factors can vary from 0 to14.
- Calculation for the scaled Window Size is as follows:
 Scaled Window Size = Window Bytes x 2^S
- Example: Window Size 46 Bytes, Scaling Factor S=7 → 2⁷ = 128 46 Bytes x 128 = 5'888 Bytes
- The maximum Window Size can be 1'073'741'824 Bytes = 1 Gigabyte

,Window Scaling' factor from Client

After the two TCP SYN frames, the window size is announced in the scaled format and Wireshark displays the scaled value.

© 2012 Leutert NetServices

TCP Extensions for High Performance

- The following TCP options are defined in RFC1323:
 - 01 No operation (for padding)
 - 02 Max. Window size (SYN)
 - 03 Window scale (SYN)
 - 04 SACK permitted (SYN)
 - 05 SACK option (Acknowledges)
 - 08 Time stamp (SYN and Acknowledges)

8 (options: (24 bytes)
	Maximum segment size: 1460 bytes
	NOP Window scale: 2 (multiply by 4) NOP Timestamps: TSval 0, TSecr 0 NOP NOP SACK permitted
0000 0010 0020 0030 0040	00 90 27 96 a9 2e 00 00 e8 20 20 58 08 00 45 00 00 40 00 79 40 00 80 06 77 fe c0 a8 00 69 c0 a8

TCP 'Selective Acknowledge' Option

- The usage of the TCP SACK option is negotiated during the 3-Way hand shake.
- The SACK option can be activated from one or both sides.
- Without SACK option, only the last received segment of a contiguous series can be acknowledged.

- The SACK Option allows to acknowledge non-contiguous segments of a series and can request for specific segments.
- The SACK Option can improve the throughput of LFN's significantly.

TCP 'Selective Acknowledge' Option

SHARKFEST '12

© 2012 Leutert NetServices

TCP Analysis with Wireshark Expert

- TCP performance can be influenced by these three main components
- The Wireshark Expert is offering great support in analyzing TCP sessions
- Understanding TCP and Expert Messages helps isolating problems

TCP Analysis with Wireshark Expert

- The Wireshark Expert System recognizes many abnormalities or errors and creates a list sorted by severities:
 - Segment Lost
 - Duplicate ACK
 - Retransmissions
 - Fast Retransmissions
 - Zero Window
 - Window Full
 - and many more...

Errors: 0 (0) V	Varnings: 1 (8)	Notes: 426	(1007) Chats: 2	(2) Details: 1017
Vo		Severity 4	Group	Protocol	Summary
	1	Chat	Sequence	TCP	Connection establish request (SYN): server port
	2	Chat	Sequence	TCP	Connection establish acknowledge (SVN+ACK):
1	1443	Note	Sequence	TCP	Duplicate ACK (#1)
	1444	Note	Sequence	TCP	Duplicate ACK (#2)
1	1445	Note	Sequence	TCP	Duplicate ACK (#3)
3	1446	Note	Sequence	TCP	Duplicate ACK (#4)
	1447	Note	Sequence	TCP	Duplicate ACK (#5)
1	1448	Note	Sequence	TCP	Duplicate ACK (#6)
1	1449	Note	Sequence	TCP	Duplicate ACK (#7)
15	1450	Note	Sequence	TCP	Duplicate ACK (#8)
1	1453	Warn	Sequence	TCP	Fast retransmission (suspected)

• You still need well-founded TCP knowledge to understand the error messages and to draw the right conclusions.

TCP Analysis with Wireshark Expert

• Click on the colored ,Expert Button' to open the ,Expert Infos' window

0010	00 00 87 ff	00 fe	40 3b	5a 41	ff 40	fe	80 02
0030	00 00	00	00	00	UL	80	00
G File 1	O/Users/Win7	Usen	Deskto	ap\Wn	ong tir	ne ord	er.pcap

Level 0 = No Expert info available for protocols present in trace file (i.e. for protocols using UDP)

and the loss had been a set of the second	0010	00	34	36	d7	40	00	80	06
	0020	e0	78	dd	d1	00	50	09	f9
	0030	20	00	f4	d6	00	00	02	04

Level 1 = Chats: Information about normal data flow, e.g. TCP session establishment and closing. HTTP Get/OK/404 etc.

0010	00	30	3e	e5	40	00	40	06
0020	7d	48	ff	18	23	8c	47	e5
0030	80	00	ab	2a	00	00	02	04
O File:	°C:\U	sers\	Vista	Use	n/De	sktor	p\Wi	resha

	0010 0020 0030	ab 3e	88 16 e0	0a d7	00 66 be	40 3a 00	00 ae 00	80 69 46	06 1f 60
ŀ) File.	"G:\1	Wire	shar	K\4 T	race	File	s\Tra	ce Fi

	10	00	30	3c	f0	40	00	80°	06
	20	c6	ad	12	6c	00	50	e5	0f
	30	ff	ff	d5	7e	00	00	02	04
•	File: '	'C:\U	sers\	Vista	Use	r\De	skto	p\Wi	resha

Level 2 = Notes: Reference to slight abnormalities like ,Duplicate ACK', ,Retransmissions' etc.

Level 3 = Warnings: Informs about abnormalities like ,Segment lost', Segments out of order' etc.

Level 4 = Errors: Messages on serious problems like deformed segments (i.e. missing fields)

SHARKEES

- Sometimes, a graphic tells us more than a thousand frames
- Wireshark offers excellent graphical TCP session presentations
- TCP Stream Graph allows to recognize all the following abnormalities:
 - Lost Frames
 - Duplicate Frames
 - Out of order Frames
 - TCP Sequence number and Segment Sizes
 - Acknowledges, Delayed Acknowledges
 - Duplicate and Selective Acknowledges
 - Retransmissions and Fast Retransmissions
 - Windows Sizes, sliding Window, exceeded und frozen Windows Size
 - Window Scaling, Zero Window and Window Full Situation
 - Slow Start, full Flow rate and Flow throttling

• Now, let us analyze our customer case using Frame Analysis

115	1_60	SMB Copy SM 3	ISsec auto restric	ted.pcap (Wir	eshark 16	8 (SVN Ne	(42761 from /trunk-1.6)	X
Eile	Ęd	t View Go j	Çapture Analyz	e Statistics	Telephony	Tools	nternals Help	
			88*	2814	4.4	4 7 1	L 🔲 🗊 Q Q Q 🗇 👹 🕅 🥵 🗱	
Filt	en					1	Expression Clear Apply	
Na,		Time	Source	Destination	Length	Protocol	Infe	
	1	0.000000) Client	Server	66	TCP	49580 > microsoft-ds [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1	
	2	0.000334	Server	Client	66	TCP	microsoft-ds > 49580 [SYN, ACK] Seq=0 Ack=1 win=8192 Len=0 MSS=1464 WS=16 SACK_PE	ERA
	3	0.186347	Client	Server	60	TCP	49580 > microsoft-ds [ACK] Seq=1 Ack=1 Win=65536 Len=0	
	4	0.000005	i Client	Server	213	SMB	Negotiate Protocol Request	
Ξ	5	0.029779	Server	Client	506	SMB2	NegotiateProtocol Response	
	6	0.186723	Client	Server	162	SMB2	NegotiateProtocol Request	
	7	0.029456	Server	Client	506	SMB2	NegotiateProtocol Response	
	8	0.184073	Client	Server	220	SMB2	SessionSetup Request, NTLMSSP_NEGOTIATE	
	9	0.000711	Server	Client	359	SMB2	SessionSetup Response, Error: STATUS_MORE_PROCESSING_REQUIRED, NTLMSSP_CHALLENGE	
1	0	0.185778	Client	Server	663	SMB2	SessionSetup Request, NTLMSSP_AUTH, User: WIN7-USER-PC\test, Unknown message type	
1	1	0.000918	Server	Client	159	SMB2	SessionSetup Response, Unknown message type	
1	2	0.185759) Client	Server	170	SMB2	TreeConnect Request Tree: \\192.168.0.201\IPC\$	
1	3	0.000321	Server	Client	138	SMB2	TreeConnect Response	
1								, "
10	Fra	me 1: 66	bytes or	n wire ((528 k	oits).	66 bytes captured (528 bits)	
1	Eth	ernet II	, Src: W	istron o	0:66:	fd (0	0:0a:e4:c0:66:fd), Dst: OuantaCo_6d:6c:e0 (00:23:8b:6d:6c:e0)	
(E) -	Int	ernet Pro	otocol Ve	ersion 4	. Sro	: Cli	ent (192.168.0.130), Dst: Server (192.168.0.201)	
m	Tra	nsmissio	n Contro	Protoc	:0], 5	Src Po	rt: 49580 (49580), Dst Port: microsoft-ds (445), Seq: 0, Len: 0	
				at the state of the state	-			and a

ALCOST LARS LODGE THAT

• Now, let us analyze our customer case using TCP Stream Graph

What can be read out of the trace file and the TCP Stream graph:

- Client and Server are both using Window Scaling and Selective ACKs
- The trace file has been captured on the server side
- The Round-Trip-Time is 186ms
- The receiver (Client) window is wide open
- The network is dropping frames
- The server is **retransmitting** frames
- At this stage, we can exclude the client !

• TCP ,Three-way Handshake'

Client SYN

- •Start Sequence Number
- •Window Size

Options:

- Maximum Segment Size
- •Window Scaling
- Selective Acknowledges
- •Timestamp
- •PAWS (Protection against wrapped sequence #)

Client ACK

•Acknowledge Server Sequence Number

Server SYN; ACK

Start Sequence Number
Acknowledge Client Sequence Number
Window Size
Options:
Maximum Segment Size
Window Scaling
Selective Acknowledges
Timestamp
PAWS (Protection against wrapped sequence #)

Let us have a closer look at the servers behavior!

What can be read out of the TCP Stream graph:

- The server is starting with 15Mbit/s transmission rate
- The network is dropping some frames (pretty normal on WAN)
- Server is throttling down to 1.5 Mbit/s
- Server is not trying to speed up again
- But why?
- At this stage we can exclude the network

MS Windows TCP Autotuning Features

Microsoft has implemented new autotuning in Vista, Win7, Server2008

- These features should improve TCP throughput and are ON by default
- However, this is not always the case, and may cause some Internet related issues and problems !

🚾 Administrator: Eingabeaufforderung	×
C:\Windows\system32>netsh interface tcp show global	
Querying active state	
TCP Global Parameters	
Receive-Side Scaling State : enabled	
Chimney Offload State : enabled	
Receive Window Auto-Tuning Level : normal	
Add-On Congestion Control Provider : none	E
ECN Capability : disabled	
RFC 1323 Timestamps : disabled	
	*
 4 	P

MS Windows TCP Autotuning Features

•	Autotuning	$\rightarrow A$	ctivate:	netsh	interfa	ace tcp	set globa	al autotunir	ng=norm	nal
		\rightarrow D	eactivate:	netsh	interfa	ace tcp	set globa	al autotunir	ng=disal	bled
•	Compound TCP	$\rightarrow A$	ctivate:	netsł	n interf	ace tcp	set glob	al congesti	onprovi	der=ctcp
~		\rightarrow D	eactivate:	netsh	interfa	ace tcp	set globa	al congestio	onprovid	der=none
•	ECN Support	$\rightarrow A$	ctivate:	netsł	n interf	ace tcp	set glob	al ecncapa	bility=e	nabled
		\rightarrow D	eactivate:	netsh	interfa	ace tcp	set globa	al ecncapa	bility=di	sabled
•	TCP Chimney offloadir	ng	\rightarrow Activate	e:	netsh	interfac	e tcp set	global chir	nney=e	nabled
			\rightarrow Deactiv	vate:	netsh	interfac	e tcp set	global chii	mney=d	isabled
•	Receive-side Scaling (RSS)	\rightarrow Activate	e:	netsh	interfac	e tcp set	global rss	enable=	d
			→ Deactiv	vate:	netsh	interfac	e tcp set	global rss	=disable	ed

This command did solve the issue in our case:

• Windows Scaling heuristics \rightarrow Deactivate: netsh int tcp set heuristics disabled

 \rightarrow Activate: netsh int tcp set heuristics enabled

• Now let us have a closer look at the servers behavior again!

Thanks for visiting

Rolf Leutert, Leutert NetServices, www.wireshark.ch

© 2012 Leutert NetServices