
Microsoft’s Demon
Datacenter Scale Distributed Ethernet Monitoring Appliance

Rich Groves

Principal Architect

Microsoft GNS

1

Bill Benetti

Senior Service Engineer

Microsoft MSIT

Before We Begin

2

•  We are Network Engineers.

•  This isn’t a Microsoft product.

•  We are here to share methods and knowledge.

•  Hopefully we can all foster evolution in the industry.

Microsoft is a great place to work!

3

•  We need experts like you.

•  We have larger than life problems to solve.

•  Networking is important and well funded.

•  Washington is beautiful.

The Microsoft Demon Technical Team

•  Rich Groves

•  Bill Benetti

•  Dylan Greene

•  Justin Scott

•  Ken Hollis

•  Tanya Ollick

•  Eric Chou

4

About Rich Groves

•  Microsoft’s Global Network Services

NOUS – Network of Unusual Scale

•  Microsoft IT

EOUS – Enterprise of Unusual Scale

•  Time Warner Cable

•  Endace

Made cards, systems, software for “Snifferguys”

•  AOL

“Snifferguy”

•  MCI

5

Ar#st’s Approxima#on

The Traditional Network

•  hierarchical tree optimized for north/

south traffic

•  firewalls, load balancers, and WAN
optimizers

•  not much cross datacenter traffic

•  lots of traffic localized in the top of

rack

6

Hierarchical Tree Structure – Op#mized for N-‐S traffic

Analyzing the Traditional Network

•  insert taps within the aggregation

•  port mirror at the top of rack

•  capture packets at the load

balancer

7

well understood but costly at scale

The Cloud Datacenter

8

•  tuned for massive cross
data center traffic

•  appliances removed for

software equivalents

Can you tap this cost effectively?

9

•  8,16,and 32x10g uplinks

•  Tapping 32x10g ports requires 64 ports
to aggregate.

(Who can afford buying current systems for that?)

•  ERSpan could be used, but it impacts
production traffic.

•  Even port mirrors are a difficult task

 at this scale.

Many attempts at making this work

•  Capturenet
-  complex to manage

-  purpose built aggregation devices were far too expensive at scale

-  resulted in lots of gear gathering dust

•  PMA - “Passive Measurement Architecture”
-  failed due to boring name

-  rebranded as PUMA by outside marketing consultant (Rich’s eldest daughter)

•  PUMA
-  lower cost than Capturenet

-  extremely feature rich

-  too costly at scale

•  Pretty Pink PUMA
-  attempt at rebranding by Rich’s youngest daughter
-  rejected by the team

 10

Solution 1: Off the Shelf

•  used 100% purpose built aggregation gear

•  supported many higher end features (timestamping,slicing,etc)

•  price per port is far too high

•  not dense enough (doesn’t even terminate one tap strip)

•  high cost made tool purchases impossible

•  no point without tools

11

Solution 2: Cascading Port Mirrors

12

•  cost effective

•  uses familiar equipment

•  can be done using standard CLI

commands in a config

The Upside

The Downside
•  control traffic removed by some switches

•  assumes you know where to find the data
•  lack of granular control

•  uses different pathways in the switch

•  quantity of port mirror targets is limited

switch switch

switch

host

I heard

packets

1,2,3,4

I’m not allowed
to tell anyone

about packet2

I heard

packets

1,3,4

monitor ports
How

•  mirror all attached monitor ports to next

layer

•  pre-filter by only mirroring interfaces you

wish to see

Solution 3: Making a Big Hub

•  Control traffic is still intercepted by the switch.

•  Performance is non-deterministic.

•  Some switches need SDK scripts to make this work.

•  Data quality suffers.

13

•  cost effective

Upside

Downside

monitor ports

switch

switch switch

•  turn off learning

•  flood on all ports

•  unique outer VLAN tag per port using

QinQ

•  pre-filter based on ingress port through

VLAN pruning

How

The End

•  Well not really, but it felt like it.

14

Core Aggregator Functions

•  terminates links

•  5-tuple pre-filters

•  duplication

•  forwarding without modification

•  low latency

•  zero loss

15

•  time stamps

•  frame slicing costly due to lack of demand

outside of the aggregator space

do-‐able in merchant silicon switch

chips

Let’s solve 80 percent of the problem:

•  terminates links

•  5-tuple pre-filters

•  duplication

•  forwarding without modification

•  low latency

•  zero loss

Reversing the Aggregator

•  terminate links of all types and a lot of them
•  low latency and lossless

•  N:1, 1:N duplication

•  some level of filtering

•  control plane for driving the device

16

The Basic Logical Components

What do these platforms have in common?

17

Can you spot the

commercial

aggregator ?

Introducing Merchant Silicon Switches

18

Advantages of merchant silicon chips:

•  more ports per chip (64x10g currently)

•  much lower latency
(due to fewer chip crossings)

•  consume less power

•  more reliable than traditional ASIC based

 multi-chip designs

Merchant Silicon Evolution

19

Year 2007 2011 2013 2015

10G on single

chip

24 64 128 256

Silicon

Technology

130nm 65nm 40nm 28nm

Interface speed evolu#on: 40G, 100G, 400G(?), 1Tbps

This is a single chip. Amazingly dense switches are created using mul#ple chips.

Reversing the Aggregator

•  terminate links of all types

•  low latency and lossless
•  N:1, 1:N duplication

•  some level of filtering

•  control plane for driving the device

20

The Basic Logical Components

Port to Port Characteristics of Merchant Silicon

21

Latency port to port (within the chip)

Loss within the aggregator isn’t acceptable.

Such deterministic behavior makes a single chip system ideal as an aggregator.

Reversing the Aggregator

•  terminate links of all types

•  low latency and lossless

•  N:1, 1:N duplication

•  some level of filtering
•  control plane for driving the device

22

The Basic Logical Components

Duplication and Filtering

23

•  line rate duplication in hardware to all ports

•  facilitates 1:N, N:1, N:N duplication and aggregation

•  line rate L2/L3/L4 filtering on all ports

•  thousands of filters depending on the chip type

Duplica#on

Filtering

Reversing the Aggregator

•  terminate links of all types

•  low latency and lossless

•  N:1, 1:N duplication

•  some level of filtering

•  control plane for driving the device

24

The Basic Logical Components

Openflow as a Control Plane

•  remote API for control

•  allows an external controller to manage L2/L3 forwarding and some header

manipulation

•  runs as an agent on the switch

•  developed at Stanford 2007-2010

•  now managed by the Open Networking Foundation

What is Openflow?

Supervisor!

Supervisor!
Control Plane

Data Plane

Data Plane

 C
o
n
tr
o
l
B
u
s
(P
ro
p
ri
e
ta
ry
 c
o
n
tr
o
l
p
ro
to
co
l)

Common Network Device

Controller Programs Switch’s “Flow Tables”

Supervisor (OpenFlow Agent)!

Supervisor (OpenFlow Agent)!

 C
o
n
tr
o
l
B
u
s

OpenFlow Controller"

F
lo

w
 T

a
b

le

F
lo

w
 T

a
b

le

Priority Match Ac;on

List

500 TCP.dst=22 TTL-‐-‐,

Fwd:port 3

200 IP.dst=

128.8/16

Queue: 4

100 * DROP

Priority Match Ac;on

List

300 TCP.dst=80 Fwd:port 5

100 IP.dst=

192.8/16

Queue: 2

400 * DROP

10.0.1.2!10.0.1.2!10.0.1.2!

Controller"

Proactive Flow Entry Creation

“match xyz, rewrite VLAN, forward to port 15”

“match xyz, rewrite VLAN, forward to port 42”

Openflow 1.0 Match Primitives

 (Demon Related)

 Match Types

•  ingress port

•  src/dst MAC

•  src/dst IP

•  ethertype

•  protocol

•  src/dst port

•  TOS

•  VLAN ID

•  VLAN Priority

 Action Types

•  mod VLAN ID

•  drop

•  output

•  controller

Flow Table Entries == “if,then,else”

if “ingress port=24 and ethertype=2048(IP) and dest IP=10.1.1.1”

then “dest mac=00:11:22:33:44:55 and output=port1”

if “ethertype=2054(ARP) and src IP=10.1.1.1”

then “output=port2,port3,port4,port5,port6,port7,port8,port9,port10”

if “ethertype=2048(IP) and protocol=1(ICMP)”

 then “controller”

Openflow 1.0 Limitations

31

•  lack of QinQ support

•  lack of basic IPv6 support

•  no deep IPv6 match support

•  can redirect based on protocol number (ether-type)

•  no layer 4 support beyond port number

•  cannot match on TCP flags or payloads

mux

service

monitor ports

Multi-Tenant Distributed Ethernet Monitoring Appliance
Enabling Packet Capture and Analysis at Datacenter Scale

tooling

filter and deliver to any
“Demonized” datacenter even

to hopboxes and Azure

more than 20X cheaper
than “off the shelf” solu#ons

4.8 Tbps of filtering capacity

 find the needle in the haystack

save valuable router resources
using the

Demon packet sampling offload

self serve
using a RESTful API

leveraging Openflow
for

modular scale and granular control

Demon appliance

filter filter

service

delivery

 Industry Standard CLI

based on low-‐cost

merchant silicon

Filter Layer

33

terminates inputs from

1,10,40g ports

ini#ally drops all traffic

inbound

approximately 1000 L3/L4

Flows per switch

performs longest match filters

mux

service

monitor ports

filter filter

service

delivery

high rate sFlow sampling with

no ”produc#on impact”

•  filter switches have 60 filter interfaces facing monitor ports

•  filter interfaces allow only inbound traffic through the use of high

priority flow entries

•  4x10g infrastructure interfaces are used as egress toward the mux

Mux Layer

34

terminates 4x10g infrastructure

ports from each filter switch

performs shortest match filters

provides both service node and

delivery connec#vity

duplicates flows downstream if

needed

mux

service

monitor ports

tooling

filter filter

service

delivery

•  introduces pre-service and post-service ports

•  used to aggregate all filter switches

•  directs traffic to either service node or delivery interfaces

Services Nodes

35

leverage higher end features on a
smaller set of ports

mux

service

monitor ports

filter filter

service

delivery

 possible uses:
•  deeper filtering

•  time stamping

•  frame slicing

•  encapsulation removal for tunnel

inspection
•  configurable logging

•  higher resolution sampling

•  encryption removal

•  payload removal for compliance

•  encapsulation of output for location
independence •  connected to mux switch through pre-service and post-service ports

•  performs optional functions that Openflow and merchant silicon cannot

currently provide

Delivery Layer

36

1:N and N:1 duplica#on

data delivery to tools

further filtering if needed

mux

service

monitor ports

tooling

filter filter

service

delivery

•  introduces delivery interfaces which connect tools to Demon

•  can optionally fold into mux switch depending on tool quantity and

location

Advanced Controller Actions

37

receives packets and octets of all

flows created

duplicate LLDP, CDP, and ARP

traffic to the controller at low

priority to collect topology

informa#on

source “Tracer” documenta#on

packets to describe the trace

controller"

Demon

applica#on

API

API"

CLI

above used as rough trigger for

automated packet captures

Location Aware Demon Policy

38

service service

controller"

demon

applica#on

API

API"

CLI

user

•  policy created using CLI or API
“forward all traffic matching tcp dest 80 on

port1 of filter1 to port 1 of delivery1”

•  Demon app creates flows though
controller API

•  controller pushes a flow entry to

filter1,mux,and delivery to output
using available downstream links

•  traffic gets to the wireshark system

filter

monitor ports

filter1

mux

delivery

drops by

default

high priority

flow takes

precedence

Location Independent Demon Policy

39

service service

controller"

Demon

applica#on

API

API"

CLI

user

•  policy created using CLI or API

•  if TCP dst port 80 on any ingress

port on any filter switch then add
location meta-data and deliver to

delivery1

•  Ingress VLAN tag is rewritten to

add substrate locale info and
uniqueness to duplicate packets.

•  Traffic gets to Wireshark.

filter1

monitor ports

filter

mux

delivery

drops by default

on all ingress

interfaces

high priority

flow is created

on all switches

ingress Vlan tag is

rewrioen

delivery

Inserting a Service Node

40

service

controller"

Demon

applica#on

API

API"

CLI

user

•  policy created using CLI or API
forward all traffic matching tcp dest 80
on port1 of filter1 to port 1 of delivery1

and use service node “timestamping””

•  flows created per policy on the

filter and mux to use the service

node as egress

•  traffic gets to Wireshark

filter

monitor ports

filter1

mux

service

flows created

based on policy

mux uses

service node as

egress for flow

#mestamp is added

to frame and sent

toward mux

mux sends service

node sourced traffic

to delivery switch

Advanced Use Case 1:

Closed Loop Data Collection

41

service service

controller"

Demon

applica#on

API

API"

CLI

sFlow

collector

•  sFlow exports to collector
•  Problem subnets are observed

through behavioral analysis.

•  sFlow collector executes Demon
policy via the API to send all traffic

from these subnets to a capture
device

•  tracer packets are fired toward the

capture device describing the
reason and ticket number of the

event

filter

monitor ports

filter1

mux

delivery

sFlow

samples

sourced

from all

interfaces

only

meaningful

captures are

taken

Advanced Use Case 2:

Infrastructure Cries for Help

42

service service

controller"

Demon

applica#on

API

API"

CLI

•  A script is written for the load
balancer describing a failstate,
DDOS signature, or other

performance degradation.

•  The load balancer executes an
HTTP sideband connection
creating a Demon policy based on

the scripted condition.

•  Tracer packets are fired at the
capture server detailing the reason

for this event.

filter filter1

mux

delivery

 produc#on

network

load

balancer

monitor ports

Summary

•  The use of single chip merchant silicon switches and Openflow can
be an adequate replacement for basic tap/mirror aggregation at a

fraction of the cost.

•  An open API allows for the use of different tools for different tasks.

•  Use of an Openflow controller enables new functionality that the

industry has never had in a commercial solution.

43

Thanks

•  Q&A

•  Thanks for attending!

44

