
Expanding Wireshark Beyond
Network Interfaces
Mike Kershaw, Kismet Wireless
Mike Ryan, iSEC Partners

About Us

Mike Kershaw

Kismet wireless sniffer
Various open-source hardware for
sniffing
Kisbee Zigbee sniffer
Daisho wired protocol sniffer

About Us

Mike Ryan

Infosec Consultant @ iSEC Partners
Bluetooth LE Researcher
2 cool 4 skool

MEGA DISCLAIMER: I speak only for
myself and not my employer. I'm lucky they
let me take work off today.

Motivations

● Wireshark is an amazing tool with decoders for a lot
of protocols

● Open Source Hardware has seen a great boom
recently

● All sorts of interesting things out there which
capture packets, but which are not network
interfaces

● How do we bring these into the fold easily?

Requirements

● Developer simplicity - If it's a huge pain to add
Wireshark support to 3rd-party projects, it just won't
happen

● Multi-platform support - We don't want to reduce
Wireshark's cross-platform functionality

● Ease of use - It needs to make sense to end users!
● Security - Don't compromise privsep

Wireshark Today

● Captures from network devices
● Loads from pcap files
● Network-centric (obviously)
● Able to handle non-Ethernet traffic already (Wi-Fi,

TokenRing, USB, other esoterica)
● Still needs to be a network interface or a file

Non-Network Options Today

● Log to a file, open in Wireshark
● Not real-time, kind of annoying

● Play games with tun/tap network devices and clone
packets into a virtual netdev
● Requires root to manipulate interfaces, somewhat complex, not

cross platform at all

● Write to a pipe
● Best option so far, annoying for end users

Where we need to get to

● Don't break capturing from network devices
● Don't force compiling plugins directly into Wireshark
● MAKE IT EASY. People doing random custom

projects won't spend a lot of time
● Present a standard Wireshark UI - if it's unusable or

opaque it's worthless

Hurdles to External Capture

● Wireshark & Pcap like network interfaces
● All network interfaces are configured the same way

(more or less)
● Running arbitrary binaries is really scary from a

security standpoint
● Things that don't act like network devices need

weird configs

Solutions!

● Wireshark (and dumpcap) can read from pipes!
● Pipes are multiplatform!
● Making a simple configuration grammar lets us

define custom UI elements
● Placing responsibility for privilege escalation with

the capture binary solves security issues
● Minimal changes to Wireshark internal code

Basic Extcap Architecture

● Each external capture 'plugin' is an executable
provided by capture tool developers

● Don't care what language it's in
● Responds to a set of basic arguments to list

interfaces, config options, and initiate capture
● Writes to a named pipe fed to dumpcap
● Basic config grammar describes UI

Extcap security

● Extcaps are launched by Wireshark - no more initial
privs than the starting user

● Extcap privs are controlled by whatever provided
the extcap - if it needs suidroot, they can grant that.
We can't know if they do, and don't grant it

● Config grammar is non-turing, just markup

Extcap Grammar

● [type] {[attribute]=[value]}*
● Each type is a sentence
● Extremely simple to generate - designed to be easy

to add to tools, generate from printf
● Simple to parse - non-evaluated, non-escaped, non-

turing

Interface sentences

● Interface sentences list known interfaces for each
extcap, and a user-displayable interface name as
well as the calling value passed back to extcap

● Interfaces make up the list of supported interfaces
in Wireshark

interface {display=Interface One}{value=int1}
interface {display=Interface Two}{value=int2}

Multiple Interfaces

● Multiple interfaces can be supported by a single
extcap plugin (same as multiple Ethernet devices)

● Each interface can have independent configs and
will spawn an independent extcap capture

● Extcap plugin provide a list of interfaces, allowing
for searching USB, remote network, etc

DLT sentences

● Extcap tools need to tell Wireshark what DLTs are
supported on a capture

● Provides DLT#, name, and displayable field

dlt {number=147}{name=USER0}{display=Bluetooth Low Energy}

DLT = Data Link Type
Specifies Link Layer

Arguments

● Most complex function to handle
● Can be presented to the user as several types; int,

double, etc text fields, boolean checkboxes,
checkbox lists

● Can also be populated GTK types like selector or
radio buttons

● Allows for tooltips for explanation

Arguments

● Each argument has a 'call=' argument, which is the
literal call made to the extcap binary

● Can be 'call=--longarg' or 'call=-a'
● 'type=' determines how it is presented in Wireshark
● Selector/Radio/Check selectors are populated with

additional 'value' sentences

Arguments (examples)

arg {number=0}{call=frequency}{display=Frequency}

{type=integer}{range=2400,2480}{default=2437}

{tooltip=Frequency in MHz, 2400-2480}

arg {number=1}{call=hop}{display=Boolean}

{type=boolean}{default=true}

{tooltip=Dynamically hop channels}

Values

● Multiple value sentences can be associated with an
argument

● Pre-fills selectables or radio button groups
● Whatever the user selects will be passed to the

argument's call

arg {argnum=0}{value=12345}{display=First}

Calling

● Take each 'arg' sentence
● Build an argument list of the arg calls
● Run extcap binary pointing to the FIFO

some_extcap --call1=foo --call2=bar --call3=1000000 --

fifo=/tmp/excap12234324

Error checking

● We want to do as much as possible to make it hard
for the user to screw up

● Since we're targeting esoteric hardware we want to
handle esoteric arguments

● Transparently encode scientific notations (frequency
of 100e6)

● Range checking can happen in the UI

External capture tools: Requirements

● Must respond to a handful of arguments
● Must be able to write a pcap stream to a named

pipe
● Must flush pipe after each packet
● ...
● That's about it!

Wireshark Pipes

● What did we change?
○ Not much!

● Wireshark has had pipes since like forever
● We just slap a nice[r] GUI on it

○ mumble mumble DLTs and exec'ing
extcaps

Wireshark Guts

● What did we change?
○ Not much!

● Wireshark has had pipes since like forever
● We just slap a nice[r] GUI on it

○ mumble mumble DLTs and exec'ing extcaps

Ye Olde Way

● Call dumpcap -D to get all interfaces

● Call dumpcap -L to get DLTs from interface

● Select options from static GUI
● Pass args into dumpcap for capture

Everything boils down to pcap_
calls:
Wireshark, dumpcap, and
libpcap all need to be taught
new interfaces! LAME

NEW! And Improved!

● Call dumpcap -D to get all PCAP interfaces
○ For each extcap: extcap --list-interfaces

● Call dumpcap -L to get DLTs from PCAP interface
○ extcap --list-dlts --interface foo123

● Select options from static GUI and dynamic GUI
○ extcap --config --interface foo123

● Pass args into dumpcap for capture
○ extcap --capture --fifo /tmp/ex898 ...

○ dumpcap -i /tmp/ex898 <- pipe!

Demo!

Either you just saw something awesome, or you just
saw us scramble and fail!
Maybe both?

Demo!

Demo!

Demo!

Demo!

What needs finishing

● Better error handling
● Killing off opened processes better
● Testing on Windows
● Enforcing range & type in UI

Projects!

Projects we've already started converting to extcap, or
which we plan to use extcap in

Ubertooth One

● Bluetooth sniffing hardware designed by Mike
Ossmann

● Bluetooth sniffing is pretty hard - you can't sniff it
using commodity Bluetooth hardware

● Allows for baseband capture of Bluetooth and
Bluetooth LE

Ubertooth One

Ubertooth System Interface

● Presents stream of radio data to the OS
● "Drivers" written in LibUSB, a userspace interface
● Code on OS looks for start of Bluetooth frames
● Able to generate pcaps but not emulate a device

* This is classic Bluetooth

Ubertooth One Bluetooth Low Energy

● BTLE / Smart / 4.0 is way simpler than classic BT
● Which means we can actually sniff it!
● Used in some interesting places

Ubertooth One Bluetooth Low Energy

● BTLE / Smart / 4.0 is way simpler than classic BT
● Which means we can actually sniff it!
● Used in some interesting places

I'M NOT PICKING ON
THESE VENDORS GOSH
IT'S AN EXAMPLE

Ubertooth One BTLE: extcap

● ~100 lines of Python
● 50 of that is handling getopt(!)
● Wrapper around existing PCAP support

Kisbee

● 802.15.4 sniffer, OSHW
● Interfaces over Bluetooth SPP/RFComm or CDC-

ACM serial
● Presents to OS as a USB attached serial, definitely

not a network device

Kisbee

Interfacing Kisbee

● Simple (relatively) python script using PySerial talks
the Kisbee protocol

● Already had support for writing to pcap files
(shoehorned via Scapy)

● Protocol parser for Kisbee about ~350 lines of
python

Converting Kisbee to Extcap

● Throw some ArgParser code on to handle the
extcap arguments

● Do some validation of serial interfaces
● Accept --fifo instead of --file
● Add some pcap.flush() calls
● ...
● That's it! Less than 100 lines of changed code!

Project Daisho

● Darpa Cyber Fast Track funded, Mike Ossmann /
Great Scott Gadgets principle

● Multiple wired phy-layer capture devices using a
common USB3 control board

● First open-source USB3 stack (as far as we know)
● Multiple network-y devices, but not presented as

network interfaces

Daisho Passthrough Taps

● Gbit Ethernet
● USB3
● HDMI
● RS232
● SDR? Maybe in the future...

Daisho Mainboard

Daisho Gig-E

Daisho System Interface

● Captures phy-layer data from different types of
interfaces

● Wireshark already has some USB decoders, and of
course Ethernet

● Lets us plug USB3 dumper code straight into
Wireshark with pipes instead of huge pcap files

Software Defined Radio

● Antenna + Digitizer + Processing
● All the digital signal processing is done on the host

computer, not in a dedicated IC
● Able to decode any protocol it's able to receive... in

theory
● Very expensive in terms of power and compute

resources, but very flexible

Software Defined Radio

● SDR hardware used to be extremely expensive and
rare

● Recently (in the last 6 months) it's become nearly a
commodity

● Software is lagging but will soon catch up now that
hardware is readily available

HackRF

● Mike Ossmann / Great Scott Gadgets is making a
low-cost high-flexibility SDR

● Herald of more work in SDR
● Very difficult to make a SDR work like a network

interface, but now we don't have to
● 30MHz to 6GHz (!!), 20MHz samples
● In beta now, ~$400 when released

HackRF ... packets smell like bacon

RTL-SDR

● $20 DVB tuner
● Can return proper IQ data
● 60MHz to 2.2GHz, with gaps
● Kind of crappy, but REALLY REALLY cheap
● Sufficient to capture a LOT of protocols previously

not accessible with cheap hardware

RTL SDR

BladeRF

● Kickstarter, shipping w/in weeks
● 300MHz to 3.8GHz
● 40MHz capture bandwidth (!!)
● $400

BladeRF

GNU Radio

● OSS SDR radio software
● Designed as multiple pluggable blocks
● "Trivial" to chain decoder blocks and export to a

pcap file
● If it's a pcap file, we can turn it into a pipe
● Student project in works to demonstrate 802.11 via

GnuRadio, connected to Wireshark

SDR Decoders

● ADS-B / ACARS airplane data
● 802.11 Wi-Fi
● 802.15.4 Zigbee
● POCSAG/FLEX pager networks
● Satellite comms

● If it talks wireless in packets, it's a target

Recap

● Simple config grammar to build UIs
● Easy to write tools
● We'll be coordinating a patch to git soon after the

con once we do a little cleanup
● Anything that isn't a kernel netif should work through

extcap

title

● stuff

