
Why is crypto so hard to get right?

Ron Bowes, Leviathan Security Group

Sharkfest 2013

About me

•  Ron Bowes
–  @iagox86

–  http://www.skullsecurity.org

–  ron.bowes@leviathansecurity.com

•  Security consultant for Leviathan Security
Group

•  Founder/president of SkullSpace, Winnipeg’s
hackerspace

•  Rockclimber
–  The best way to improve your self confidence is

to hang 1000ft in the air – from an anchor you
built yourself!
•  This is probably more common in California, but I'm

from the prairies!

Quick agenda

•  History of crypto attacks

•  A bunch of examples, with proofs of concept

– Key re-use

– Hash length extension

– Padding oracle

•  Some proposed solutions

Why am I doing this?

•  In my opinion, crypto is one of the most important

technologies in the modern world, if implemented

correctly

•  Crypto implementation is hard

•  I decided to teach myself attacks by writing tools

– Before I knew it, I had enough to make an interesting

talk!

Why am I doing this?

•  The four stages of competence:
– Unconscious incompetence - When you don't know how

bad you are or what you don't know.

– Conscious incompetence - When you know how bad you
are and know what steps you need to take to get better.

– Conscious competence - When you're good and you know
it (this is fun!)

– Unconscious competence - When you're so good you
don't know it anymore.

•  I went to help people go from Unconscious
incompetence to Conscious incompetence!

•  Source:
http://happybearsoftware.com/you-are-dangerously-
bad-at-cryptography.html

Why am I doing this?

•  One more quote from the page, then I'll move on:

"Cryptography is perilous because you get no

feedback when you mess up. For the average

developer, one block of random base 64 encoded bytes is

as good as any other."

"You can get good at programming by accident. If your

code doesn't compile, doesn't do what you intended it to or

has easily obvervable [sic] bugs, you get immediate

feedback, you fix it and you make it better next time."

"You cannot get good at cryptography by accident."

Why am I doing this?

•  Another great talk: "If You're Typing The Letters A-

E-S Into Your Code, You're Doing It Wrong"

– http://www.cs.berkeley.edu/~daw/teaching/cs261-f12/

misc/if.html

– Hey look, it's berkeley!

– Same information, same conclusion, as both the

previous post and this talk!

– A fun, interesting read! One of my first forays into crypto.

HISTORY OF CRYPTO

The somewhat accurate

c. 75 BC: Caesar cipher

•  Shift cipher

•  25 possible encodings (26, if you count ‘0’)

•  Trivially bruteforced

J	 uijol	 nz	 gsjfoet	 bsf	 uszjoh	 up	 ljmm	 nf!	

mpm	

Caesar – World War II: No developments

World War II: Enigma Machine

Let’s get more modern

1970s: DES was invented!

•  A symmetric-key block cipher

•  Message could be decrypted by the intended

recipient and everybody who’s stolen the key

E(“This	 cereal	 sucks”)	

“Bob”	

“Eve”	 (aka,	 guy	 who	 stole	 the	 key)	

“Alice”	

Still 1970s: Along came DH and RSA

•  Now both parties have to exchange keys with

“Eve” (or each other) before they can communicate

“Bob”	
“Eve”	

“Alice”	

Kbob	

Keve	

Kalice	

Keve	

1990s: Certification Authorities

•  Now you can see if any of 100s of companies thinks

the “Bob” is actually “Bob”

“Bob”	

“Eve”	 “Alice”	

Keve	 Is	 this	 Kbob?	

Sure,	 whatever	

?	

1990s: WEP

•  While we’re talking about Goatse…

•  RC4 w/ 24-bit IV

•  Using RC4 all kinds of wrong led to total

compromise

2008: github (and other “Web 2.0” stuff)

•  A new place for people to post private keys,

passwords, and other confidential data

Point?

•  These days, encryption is rarely broken directly

•  It’s broken by…

–  Implementation error (developer mistakes)

– Operator error (end-user mistakes)

•  Document, key, codebook theft/leakage

– Stupidity (aka, CAs)

– Side-channel attacks

•  The rest of this talk will be about indirect ways to

break state-of-the-art crypto!

IMPORTANT CONCEPTS

Encryption

•  The act of obscuring data using a secret key, such

that only the intended recipient – and anybody else

who manages to steal the key – can read it

Encryption: Block cipher

•  Plaintext is broken into 8- or 16-byte blocks, each is

encrypted individually

•  Various “modes of operation” can be used to ensure

that the ciphertext isn’t repeated

Encryption: Block cipher modes of operation

– ECB

•  “Electronic codebook” mode encrypts each block
individually:

•  This leads to problems like
the famous “ECB Tux” image:

Encryption: Block cipher modes of operation

– CBC

•  “Cipherblock Chaining” feeds the output from each block into the input of
the next:

•  This is much better than CBC, but also has some serious problems

•  We’ll talk about this in detail when we talk about padding oracles

Initialization vectors: IVs

•  The ‘input’ into an encryption function

•  Designed so that the same data encrypted with the

same key doesn’t generate the same ciphertext

•  We’ll see why that’s a problem

Hashing

•  Reducing a large amount of data to a small amount

•  Works similarly to a block cipher, as we’ll see

ATTACKS

Now, what you all came here for…

KEY RE-USE IN BLOCK

CIPHERS

Key re-use in block ciphers

•  Using the same key/IV to encrypt two messages =
fail

•  This affects:
– DES (all modes)

– 3DES (all modes)

– AES (all modes)

– RC2

– RC4

– RC5

– And… well, everything else I’ve tested

Key re-use in block ciphers: When does this

work?

•  This attack works if:

– Any normal cipher is used (block or stream)

•  Note that there are better ways to attack stream ciphers

– The attacker controls at least [blocksize] bytes of the

plaintext, preferably at the beginning

•  Note that only bytes after the attacker-controlled text can be

decrypted

– The same key and IV are used each time the encryption

happens

•  Note that some ciphers – like ECB – don’t have IVs, so this

attack cannot be prevented

Key re-use in block ciphers – the setup

•  Here’s our “oracle”:

•  Note that we’re using “DES-ECB” – this attack will work, as-is, with
every block and stream cipher in almost every “mode”

•  ECB is somewhat special because it can’t be fixed
–  We’ll talk about ECB, CBC, etc. when we talk about padding oracles

Key re-use in block ciphers: example [1]

•  Here’s the output from do_crypto(“A” * 16):

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	

C1	 \x74	 \x31	 \xe1	 \xf0	 \xc6	 \x1b	 \x35	 \x11	

P2	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	

C2	 \x74	 \x31	 \xe1	 \xf0	 \xc6	 \x1b	 \x35	 \x11	

P3	 'T'	 'h'	 'i'	 's'	 '	 '	 'i'	 's'	 '	 '	

C3	 \x35	 \x13	 \x7b	 \x27	 \xb6	 \xf5	 \xda	 \x9c	

P4	 's'	 'o'	 'm'	 'e'	 '	 '	 't'	 'e'	 's'	

C4	 \xb1	 \x0e	 \xdf	 \x42	 \x93	 \xe8	 \x17	 \x42	

P5	 't'	 '	 '	 'd'	 'a'	 't'	 'a'	 \x02	 \x02	

C5	 \xe0	 \x6f	 \xcf	 \xc0	 \xcf	 \xfe	 \x87	 \x66	

Two	 blocks	 of	 just	

“A”s	 (note	 that	

the	 ciphertext	 is	

the	 same)	

	

	

The	 rest	 of	 the	

string	 encrypted	

as-‐is	

Key re-use in block ciphers: example [2]

•  Here’s the output from do_crypto(“A” * 7):

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	

C1	 \xea	 \xca	 \x59	 \x30	 \x3d	 \x8b	 \xe6	 \x0f	

P2	 'h'	 'i'	 's'	 '	 '	 'i'	 's'	 '	 '	 's'	

C2	 \xf2	 \xaa	 \xb1	 \xW	 \x54	 \xb4	 \xb5	 \x87	

P3	 'o'	 'm'	 'e'	 '	 '	 't'	 'e'	 's'	 't'	

C3	 \x34	 \x87	 \x06	 \x80	 \x9a	 \xcc	 \xad	 \x43	

P4	 '	 '	 'd'	 'a'	 't'	 'a'	 \x03	 \x03	 \x03	

C4	 \xd3	 \x71	 \x2a	 \xf5	 \x79	 \x10	 \x25	 \xea	

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	

C1	 \xea	 \xca	 \x59	 \x30	 \x3d	 \x8b	 \xe6	 \x0f	

	 GOAL	

Stuff	

That	

We	

Don’t	

Care	

About	

…	

…	

…	

…	

Key re-use in block ciphers: example [3]

•  It’s pretty trivial to guess a single byte…

–  [‘A’..’Z’ + ‘a’..’z’] do |c| do_crypto(‘AAAAAAA’ + c); end

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'S'	

C1	 \x1c	 \x32	 \x22	 \x39	 \xb7	 \x99	 \x73	 \x42	

P2	 'T'	 'h'	 'i'	 's'	 '	 '	 'i'	 's'	 '	 '	

C2	 \x35	 \x13	 \x7b	 \x27	 \xb6	 \xf5	 \xda	 \x9c	

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	

C1	 \xea	 \xca	 \x59	 \x30	 \x3d	 \x8b	 \xe6	 \x0f	

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'U'	

C1	 \x5a	 \x3c	 \x17	 \x25	 \xc8	 \x0f	 \x68	 \x3f	

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	

C1	 \xea	 \xca	 \x59	 \x30	 \x3d	 \x8b	 \xe6	 \x0f	

Goal:	

Note:	 I’m	 only	 showing	 the	
first	 block	 or	 two	

	 We’re	 trying	 to	

find	 	 a	 match	 for	

this	

	 Oh	 hai!	

	 Nope	

	 Nope	

Key re-use in block ciphers: example [4]

•  Here’s the output from do_crypto(“A” * 6):

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	 'h'	

C1	 \xcb	 \x7a	 \x74	 \xd0	 \x38	 \x45	 \xbf	 \x21	

P2	 'i'	 's'	 '	 '	 'i'	 's'	 '	 '	 's'	 'o'	

C2	 \xf9	 \x8e	 \xcd	 \xdf	 \x49	 \xf0	 \x86	 \xcb	

P3	 'm'	 'e'	 '	 '	 't'	 'e'	 's'	 't'	 '	 '	

C3	 \x70	 \x8c	 \xc0	 \x1d	 \xe5	 \xf2	 \xdc	 \x01	

P4	 'd'	 'a'	 't'	 'a'	 \x04	 \x04	 \x04	 \x04	

C4	 \xb4	 \x74	 \xfc	 \x99	 \xd9	 \xbe	 \xd2	 \x70	

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	 'h'	

C1	 \xcb	 \x7a	 \x74	 \xd0	 \x38	 \x45	 \xbf	 \x21	

	 GOAL	

Stuff	

That	

We	

Don’t	

Care	

About	

…	

…	

…	

…	

Key re-use in block ciphers: example [5]

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	 'g'	

C1	 \xbb	 \x48	 \x96	 \xa3	 \xb9	 \xb5	 \xc4	 \x32	

P2	 'T'	 'h'	 'i'	 's'	 '	 '	 'i'	 's'	 '	 '	

C2	 \x35	 \x13	 \x7b	 \x27	 \xb6	 \xf5	 \xda	 \x9c	

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	 'h'	

C1	 \xcb	 \x7a	 \x74	 \xd0	 \x38	 \x45	 \xbf	 \x21	

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	 'i'	

C1	 \x79	 \xc2	 \x04	 \x11	 \x64	 \xd0	 \xae	 \xc2	

P1	 'A'	 'A'	 'A'	 'A'	 'A'	 'A'	 'T'	 'h'	

C1	 \xcb	 \x7a	 \x74	 \xd0	 \x38	 \x45	 \xbf	 \x21	

Note:	 I’m	 only	 showing	 the	
first	 block	 or	 two	

	 We’re	 trying	 to	

find	 	 a	 match	 for	

this	

	 Oh	 hai!	

•  Once	 again,	 we’re	 guessing	 a	 single	 byte:	

–  [‘A’..’Z’	 +	 ‘a’..’z’]	 do	 |c|	 do_crypto(‘AAAAAAT’	 +	 c);	 end	

	 Nope	

	 Nope	

Key re-use in block ciphers: What’s going

on?

•  We continue likewise till we’ve decrypted the entire

packet

•  What’s going on?

– We’re forcing the first unknown byte to be on a block

boundary, then guessing it

– We can guess any character in 256 guesses, as long as

we know all the characters before it

Key re-use in block ciphers: A tool!

•  I wrote a tool called “Prephixer” to implement this

attack

– https://www.github.com/iagox86/prephixer

•  Let’s do a demo!

Preventing key re-use in block ciphers

•  Use	 different	 ininalizanon	 vectors	 (IVs)	 when	

encrypnng	 data	

•  If	 possible,	 use	 a	 different	 key	 (not	 always	

possible)	

•  If	 you’re	 using	 ECB	 mode….	 WHY	 ARE	 YOU	

USING	 ECB	 MODE!?	

HASH LENGTH

EXTENSION ATTACKS

Hash length extension attacks

•  This is why I became interested in crypto attacks

•  The basic idea: most hash algorithms (before

SHA3) can “pick up where they left off”

•  What’s that mean for security?

– Let’s find out!

Hash length extension: the setup

•  This is an attack where the following happens:

•  Server calculates the following value:

•  Then sends that verifier and data to the user

•  Later, when the user sends the data back, it uses

the verifier to ensure the data hasn't changed

if(H(secret || new_data) != verifer)
throw error()

else
trusted_operation(attacker_data)

verifier = H(secret || data)

The	 “Bad”	 operanons	

are	 in	 red	

How hashing works…

SHA1("The most merciful thing in the world, I think, is the inability of
the human mind to correlate all its contents. We live on a placid island
of ignorance in the midst of black seas of infinity, and it was not meant
that we should voyage far. The sciences, each straining in its own
direction, have hitherto harmed us little; but some day the piecing
together of dissociated knowledge will open up such terrifying vistas of
reality, and of our frightful position therein, that we shall either go
mad from the revelation or flee from the deadly light into the peace and
safety of a new dark age.")

"The most merciful thing in the world, I think, is the inability "
"of the human mind to correlate all its contents. We live on a pl"
"acid island of ignorance in the midst of black seas of infinity,"
" and it was not meant that we should voyage far. The sciences, e"
"ach straining in its own direction, have hitherto harmed us litt"
"le; but some day the piecing together of dissociated knowledge w"
"ill open up such terrifying vistas of reality, and of our fright"
"ful position therein, that we shall either go mad from the revel"
"ation or flee from the deadly light into the peace and safety of"
" a new dark age."

Let's	 look	 at	 an	 example…	

First,	 the	 string	 is	 broken	 into	 64-‐character	 blocks	 (for	 SHA1):	

How hashing works

•  Padding is added to the last block:

•  The padding is equal to a 1-bit followed by a
bunch of zero bits (“\x80\0\0\0\0.…”) followed by the length in bits

•  The last eight bytes are equal to the length of the string (0x250
bytes) in bits (0x1280 bits)

"The most merciful thing in the world, I think, is the inability "
"of the human mind to correlate all its contents. We live on a pl"
"acid island of ignorance in the midst of black seas of infinity,"
" and it was not meant that we should voyage far. The sciences, e"
"ach straining in its own direction, have hitherto harmed us litt"
"le; but some day the piecing together of dissociated knowledge w"
"ill open up such terrifying vistas of reality, and of our fright"
"ful position therein, that we shall either go mad from the revel"
"ation or flee from the deadly light into the peace and safety of"
" a new dark age.\x80\0\0\0\0\0\0\0\0\0\0\0\0..........\0\x12\x80"

How hashing works

•  Each block is hashed individually, and its output is fed into the next block

"The most merciful thing in the world, I think, is the inability "

"of the human mind to correlate all its contents. We live on a pl"

"acid island of ignorance in the midst of black seas of infinity,"

"ation or flee from the deadly light into the peace and safety of"

" a new dark age.\x80\0\0\0\0\0\0\0\0\0\0\0\0..........\0\x12\x80"

3be731c7 5880ab49 5d90c0cd df295189 b3c91449

58ec922f bdee6eec 699db098 a378f875 2b29d697

c55bc6a3 b26d5dd0 96166093 5d73c256 7f357a83

845b75f7 403a1814 30ee1c70 8a229eab c88c00d9

ed8873c1 07d882b7 b6fcbbc1 9a272d61 4cf9e7ee

The	 output	 of	 the	 last	 block	 is	 our	 hash	

	

In	 other	 words,	 the	 final	 hash	 is	 made	 up	 of	

the	 en,re	 state!	

Hash extension: We’re almost there!

•  What if we add another block, after the padding?

•  What good is that?

•  Because 100% of the state was included in the final hash –

ed8873c1 07d882b7 b6fcbbc1
9a272d61 4cf9e7ee – we could add more

data to the plaintext and calculate a new hash

without knowing the plaintext!

"ation or flee from the deadly light into the peace and safety of"

" a new dark age.\x80\0\0\0\0\0\0\0\0\0\0\0\0..........\0\x12\x80"

845b75f7 403a1814 30ee1c70 8a229eab c88c00d9

ed8873c1 07d882b7 b6fcbbc1 9a272d61 4cf9e7ee

"Hello? Yes, this is dog." (+ implicit padding)

37a780c2 e1f8a3e9 f99a7561 f12c9945 f0d82b12

Hash extension: And here we are!

•  Let's say that again, to make sure we're clear: we

just calculated the checksum for:
–  (original_text || padding || “Hello? Yes, this is dog.”)

•  Knowing only:

– The output of the original hash function:
•  ed8873c1 07d882b7 b6fcbbc1 9a272d61 4cf9e7ee

– And the text we wanted to add!

•  We did not need to know original_text!

“||”	 is	 the	 “concatenate”	 operator	 in	 crypto.	

@mak_kolybabi	 yells	 at	 me	 if	 I	 don’t	 use	 it.	

Hash extension: Applying it

•  Flickr used to have an API something like this:
–  message = SHA1(shared_secret || commands) + commands

•  Where shared_secret = the user's key (aka, a password)

•  Example:
–  message = SHA1("secretkey" + "name=ron") + "name=ron"

–  message = "\x0e\x78\x45\x47\x5d\xbe\x78\x41\x54\xe1\x55" +
 "\x36\x5d\xff\xf4\xe5\x4b\x15\x66\xa8name=ron"

 “\x0e\x78\x45\x47\x5d\xbe\x78\x41\x54\xe1\x55\x36\x5d
\xff\xf4\xe5\x4b\x15\x66\xa8name=ron”	

“Flickr”	
“Eve”	

“Ron”	

Intercepted!	

Hash extension: Applying it

•  Now, Eve has a message and its associated hash.

What can he use it for?

•  Remember, because of padding, this is what's

actually hashed:

•  But wait… as we saw before, this is the entire state

of the hash! So why can't we add another block?

"secretkeyname=ron\x80\0\0\0\0\0\0\0\0\0\0...\0\0\0\0\0\x88"

0e784547 5dbe7841 54e15536 5dfff4e5 4b1566a8

Hash extension: Applying it

•  Let’s look at how both the evil client and the legit

server calculates that hash:
"secretkeyname=ron\x80\0\0\0\0\0\0\0\0\0\0...\0\0\0\0\0\x88"

0e784547 5dbe7841 54e15536 5dfff4e5 4b1566a8

"&deletemyaccount=1" (+ implicit padding)

d281ac3c f91dbb96 0ec12c4e 0e5d73bd 91be6f10

We	 don't	 need	 to	 know	 the	

original	 data!	

Hash extension: evil client

 Eve writes

 this

 program

$	 gcc	 -‐o	 test	 test.c	 -‐lssl	 -‐lcrypto	

$./test	

d281ac3cf91dbb960ec12c4e0e5d73bd91be6f10	

	

Looks	 right!	

Hash extension: Evil client -> legit server

•  Eve then sends the following to the server:

\xd2\x81\xac\x3c\xf9\x1d\xbb
\x96\x0e\xc1\x2c\x4e\x0e\x5d
\x73\xbd\x91\xbe\x6f\x10name=ron
\x80\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x88&del
etemyaccount=1 [...implicit
padding...]

New	 signature	

Original	 text	

Original	 padding	

New	 (appended)	

data	

Implicit	 padding	

will	 be	 added	

Hash extension: Legit server

•  The legit server prepends the secret key to the data
Eve sent, and calculates the hash:

1.9.3p194 :002 > require 'openssl'
 => true
1.9.3p194 :004 > Digest::SHA1.hexdigest("secretkey" + "name=
ron
\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x88&deletemyaccount=1")
 => "d281ac3cf91dbb960ec12c4e0e5d73bd91be6f10"

$	 gcc	 -‐o	 test	 test.c	 -‐lssl	 -‐lcrypto	

$./test	

d281ac3cf91dbb960ec12c4e0e5d73bd91be6f10	

	

Remember	 what	

Eve	 calculated!	

Hash extension: A tool!

•  It’s amazingly difficult to write these attacks by hand
–  I never fail to mess up the number of zeroes, or forget to convert the length to bits, or

screw up endianness

•  Luckily, you don’t have to! I wrote hash_extender to take care of that

•  hash_extender supports the following hashes:
–  MD4, MD5, RIPEMD160, SHA, SHA1, SHA256, SHA512, Whirlpool

•  The following hash types are more difficult to extend, because the

state is truncated before being used:
–  SHA224, SHA384

•  And, the following hash type is impossible to extend, by design,

although time will tell:
–  SHA3

That was a lot of material…

•  So let’s look at some cats then do a demo

Hash extension: summary

•  If an attacker has access to a hash in the form of:

– H(secret + “knowndata”)

•  He can trivially calculate:

– H(secret + “knowndata” + padding + anything)

Hash extension: Defense

•  HMAC.

•  Next topic.

PADDING ORACLES

Padding oracles

•  Hash extension attacks are fairly simple to

understand – you just have to realize that hashes

can “pick up where they left off”

•  Padding oracles, on the other hand, require a bit

more of a leap

•  That being said, let’s do it!

Padding oracles: Overview

•  Not to be confused with the Oracle database…

•  This isn’t an attack against any particular algorithm, but against

cipher-block chaining (CBC)

•  Invented by Serge Vaudenay in the early 2000s, also called the

“Vaudenay attack”

•  A padding oracle attack occurs when an attacker has encrypted and

unknown data that he can ask a server to secretly decrypt

–  The data is a block cipher (DES, AES, etc) in CBC mode

–  The server doesn’t give indication as to what the plaintext data is

–  The returns a boolean value indicating whether the decryption

succeeded (which is based on the padding)

Padding oracles: Padding

•  We already talked about padding on hashes, but

this is different

•  Block ciphers require the data to be padded such

that it’s a multiple of the blocksize

–  If the data is already a multiple, an empty block is added

•  It doesn’t matter what the padding is, just that it's

known and unambiguous

•  Let’s look at the most common…

Padding oracles: Padding

•  Typically, PKCS #7 is used, which says…

– The value of the padding = the number of bytes of

padding

•  Eg (assume block size = 8 [DES, for example]):

H	 e	 l	 l	 o	 \x03	 \x03	 \x03	

H	 e	 l	 l	 o	 W	 o	 r	 l	 d	 \x05	 \x05	 \x05	 \x05	 \x05	

P	 a	 s	 s	 w	 o	 r	 d	 \x08	 \x08	 \x08	 \x08	 \x08	 \x08	 \x08	 \x08	

Block	 1	 Block	 2	

Padding oracles: CBC mode encryption

•  Now that we’ve looked at padding, let’s look at how

the blocks fit together

•  We already talked about electronic codebook (ECB)

and cipher-block chaining (CBC)

•  The “padding oracle attack” is actually an attack

against CBC

•  Let’s see why…

Padding oracles: CBC mode encryption

•  For any given block of plaintext, Pn, the corresponding

ciphertext, Cn, can be calculated as:

•  In other words, you XOR the plaintext with the previous

ciphertext, then encrypt it

Cn	 =	 E(Pn	 ⊕	 Cn-‐1)	

Padding oracles: CBC mode decryption

•  For any given block of ciphertext, Cn, we can calculate the

corresponding plaintext, Pn, as:

•  In other words, the ciphertext is decrypted, then XORed

with the previous ciphertext

Pn	 =	 D(Cn)	 ⊕	 Cn-‐1	

Pn	 =	 D(E(Pn	 ⊕	 Cn-‐1))	 ⊕	 Cn-‐1	
Pn	 =	 Pn	 ⊕	 Cn-‐1	 ⊕	 Cn-‐1	
Pn	 =	 Pn	

Padding oracles

•  So, we have two formulas:

•  We can verify these make sense by encrypting and

decrypting a block:

Decrypt	 the	 encrypted	 data	

Two	 XORs	 cancel	 out	

Success!	

Cn	 =	 E(Pn	 ⊕	 Cn-‐1)	
Pn	 =	 D(Cn)	 ⊕	 Cn-‐1	

Padding oracles

•  Encryption steps…

Add	 padding	

Encrypt	 each	 block	

Send	

Remove/verify	 padding	

Decrypt	 each	 block	

Receive	

Sender	 Receiver	

This	 is	 the	

dangerous	

part	

Plaintext	 (P)	 Decrypted	 (P')	

Padding oracles

•  Let's start with how this is "supposed" to work

– Example string: "Hello World"

– P = "Hello World"

Add	 padding	

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Plaintext	 (P)	 Decrypted	 (P')	

Padding oracles

•  Adding padding

–  "Hello World" is 11 characters

– With a blocksize of 8, that means we have one full block

("Hello Wo"), and one block of 3 characters ("rld")

– Therefore, we need 5 bytes of padding

Add	 padding	

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Plaintext	 (P)	 Decrypted	 (P')	

P	 =	 “Hello	 World”	

P1	 =	 “Hello	 Wo”	 P2	 =	 “rld”	

P1	 =	 “Hello	 Wo”	 P2	 =	 “rld\5\5\5\5\5”	

Padding oracles

•  P1 is encrypted to become C1

•  P2 is encrypted, then XORed with C1, to become C2.

•  C1 and C2 are combined to make C.

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	 P1	 =	 “Hello	 Wo”	 P2	 =	 “rld\5\5\5\5\5”	

C1	 =	 “8aec483e43027f22”	 C2	 =	 “287ca837W65e219”	

C	 =	 “8aec483e43027f22""287ca837W65e219”	

⊕	
Add	 padding	

Plaintext	 (P)	

Padding oracles

•  The ciphertext – C – is transmitted to the (possibly

malicious) user

•  It's important to remember that while the user can

store it and send it back to the server, the user

cannot decrypt it

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

C	 =	 “8aec483e43027f22""287ca837W65e219”	

Add	 padding	

Plaintext	 (P)	

Padding oracles

•  At some point in the future, the user will return the

encrypted data to the server

•  This is where the attack and normal usage diverge,

as we'll see

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

C'	 =	 “8aec483e43027f22""287ca837W65e219”	

Add	 padding	

Plaintext	 (P)	

Padding oracles

•  The server breaks C' back into C'1 and C'2

•  C'2 is decrypted then XORed with C'1

– Note: the server, at this point, doesn't know if valid data

was produced

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

C'1	 =	 “8aec483e43027f22”	 C'2	 =	 “287ca837W65e219”	

C'	 =	 “8aec483e43027f22""287ca837W65e219”	

P'1	 =	 “Hello	 Wo”	 P'2	 =	 “rld\5\5\5\5\5”	

⊕	

Padding oracles

•  The server looks at the last byte of the last block –

"\5" – and verifies that the last 5 bytes are all equal

to "\5" – otherwise, the padding is wrong

•  Once padding is verified, it's removed and the

blocks are reunited

•  This is all that's done to verify that

the data decrypted properly

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

P'1	 =	 “Hello	 Wo”	 P'2	 =	 “rld\5\5\5\5\5”	

P'	 =	 “Hello	 World”	

Padding oracles

•  And now, we're back where we started

– P' = P, as it's supposed to

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

P'	 =	 “Hello	 World”	

Padding oracles

•  Now let's look at an example of how we can attack

this…

Padding oracles

•  Here are the first three steps again, same as last time

P	 =	 “Hello	 World”	

P1	 =	 “Hello	 Wo”	 P2	 =	 “rld”	

P1	 =	 “Hello	 Wo”	 P2	 =	 “rld\5\5\5\5\5”	

C1	 =	 “8aec483e43027f22”	 C2	 =	 “287ca837W65e219”	

C	 =	 “8aec483e43027f22""287ca837W65e219”	

⊕	

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

Padding oracles

•  This time, the data is sent to a malicious user, such

as Eve

•  As before, Eve cannot decrypt this. But she wants

to, and will find a way!

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	 C	 =	 “8aec483e43027f22""287ca837W65e219”	

Add	 padding	

Plaintext	 (P)	

Padding oracles

•  Eve is going to focus only on the second half of the

cipher, C2 (note that this can apply to any block)

•  She generates a brand new block for C'1, then

prepends it to C2 to form C'2

C'2	 =	 “287ca837W65e219”	

C'1	 =	 “0000000000000000”	 C'2	 =	 “287ca837W65e219”	

C'	 =	 “0000000000000000""287ca837W65e219”	

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

Used	 all	 zeroes	 for	

convenience	 –	 not	

necessary	

Padding oracles

•  Now, what happens when the server tries to decrypt

this new C'?

•  Remember, C'2 is XORed with C'1 after it's

decrypted

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

C'1	 =	 "0000000000000000"	 C'2	 =	 "287ca837W65e219"	

C'	 =	 "0000000000000000287ca837W65e219"	

P'1	 =	 [garbage]	 P'2	 =	 [garbage,	 kinda]	

⊕	

Let's	 take	 a	 closer	 look	 at	

P'2	 …	

Padding oracles

•  Recall our decryption formula:

•  So C'2 is being decrypted in the

usual way, then XORed with C'1

instead of with the actual C1!

•  Instead of undoing the original

XOR, it's adding another XOR layer:

Pn	 =	 D(Cn)	 ⊕	 Cn-‐1	

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

P2	 =	 D(C'2)	 ⊕	 C'1	

C'1	 =	 "0000000000000000	 "	 C'2	 =	 "287ca837Q65e219"	

P'2	 =	 P2	 ⊕	 C1	 ⊕	 C'1	

P'2	 !=	 P2	

Padding oracles

•  To put it another way…

•  Original decryption:

•  New decryption:

…can't reduce any further

Pn	 =	 D(E(Pn	 ⊕	 Cn-‐1))	 ⊕	 Cn-‐1	
Pn	 =	 Pn	 ⊕	 Cn-‐1	 ⊕	 Cn-‐1	
Pn	 =	 Pn	

Pn	 =	 D(E(Pn	 ⊕	 Cn-‐1))	 ⊕	 C'n-‐1	
Pn	 =	 Pn	 ⊕	 Cn-‐1	 ⊕	 C'n-‐1	

Padding oracles

•  So now we have this formula:

•  But what's it mean?

•  The first thing we want to do is re-arrange it,

because we want to solve for the

original plaintext, P2 :

•  This is legal, because
Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

P'2	 =	 P2	 ⊕	 C1	 ⊕	 C'1	

P2	 =	 P'2	 ⊕	 C1	 ⊕	 C'1	

A	 ⊕	 B	 =	 B	 ⊕	 A	

Padding oracles

•  We control C'1, and we know C1, but
what about P2 and P'2?

•  We have an equation with two
unknowns!
– Or do we?

P2	 =	 P'2	 ⊕	 C1	 ⊕	 C'1	

Here's	 that	 formula	 again.	 And	 here's	 what	 the	 terms	 mean:	

P2	 =	 The	 original	 plaintext	 value	 (our	 goal)	

P’2	 =	 The	 value	 the	 server	 calculates	 (mostly	 a	 garbage	 string)	

C1	 =	 The	 previous	 ciphertext	 block	 (known	 to	 us)	

C'1	 =	 The	 ciphertext	 block	 chosen	 by	 the	 a}acker	

(“0000000000000000”)	

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

Padding oracles

•  Let's focus on P'2, and move on to the next step: Remove/verify
padding

•  If P'2 decrypts to:
–  "[garbage]\x00" Bad padding

–  "[garbage]\x01" Good padding

–  "[garbage]\x02" Bad padding (probably*)

–  "[garbage]\x03" Bad padding

–  "[garbage]\x04" Bad padding

–  "[garbage]\x05" Bad padding

–  ……

•  By definition – for this attack – the server
tells us when the padding is good or bad

P'2	 =	 P2	 ⊕	 C1	 ⊕	 C'1	

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

Let's	 ignore	 the	 rare	 case	 where	

the	 string	 happens	 to	 end	 with	

\x02\x02	 or	 \x03\x03\x03	 or	 …	

Padding oracles

•  What's this mean for our attack?

•  As soon as the padding is correct, we know the last

byte of the new plaintext (P'2)

•  That's big. That's HUGE!

– Suddenly, our equation for the last

byte of P2 only has one unknown!

– All we have to do is send 256 values

for the last byte of C'1, and we're

eventually going to get valid padding

P'2	 =	 P2	 ⊕	 C1	 ⊕	 C'1	

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

Padding oracles

•  Let’s only focus on the last bytes:

•  To define everything again…

•  P2[n] = The last byte of plaintext (the value we want!)

•  P'2[n] = The last byte of what the server ends up decrypting

(proper padding = "\x01")

•  C1[n] = The last byte of the original first block

•  C'1[n] = The last byte of the new first block

•  We can now calculate P2[n]!

P2[n] = 1 ⊕ C1[n] ⊕ C'1[n]

Encrypt	

each	 block	

Send	

Remove/verify	

padding	

Decrypt	

each	 block	

Receive	

Sender	 Receiver	

Decrypted	 (P')	

Add	 padding	

Plaintext	 (P)	

P2[n]	 =	 P'2	 [n]	 ⊕	 C1[n]	 ⊕	 C'1[n]	

Padding oracles

•  So, to summarize:

–  Choose a new block, which we call C', and prepend it to the block you’re trying

to decrypt:

–  Change the last byte of C’ until you stop getting a padding error:

–  Plug it into the formula:

–  And solve!

C'	 =	 “0000000000000000”	 C2	 =	 “287ca837W65e219”	

C'	 =	 “0000000000000026”	 C2	 =	 “287ca837W65e219”	

P2[n]	 =	 P'2[n]	 ⊕	 C1[n]	 ⊕	 C'1	 [n]	

P2[n]	 =	 0x01	 ⊕	 0x22	 ⊕	 0x26	

P2[N]	 =	 0x05	
Recall:	

P2	 =	 “rld\5\5\5\5\5”	

Padding oracles

•  By having the server tell us when the last byte of the

decrypt block is right, we can trivially decrypt and

encrypt it using only the XOR operation

•  The last byte can be set to \x02, and the second-

last byte can be guessed using the same formula

•  The last and second-last bytes can be set to

\x03\x03, and the third-last byte can be guessed

using the same formula

•  …and so on, until the whole block is decrypted

Introducing: Poracle

•  Like all these attacks, I wrote a tool

•  This one’s called “Poracle”

Padding oracles: Prevention

•  How do you prevent padding oracles?
– HMAC!

•  By prepending an HMAC hash to the encrypted
data – and validating it before the decryption is
performed – you can check if anybody has
tampered with the hash!

•  You can also prevent this by using a block cipher
mode of operation other than cipher-block chaining
– eg, counter mode, output feedback, plaintext
feedback, etc.

Almost there!

SOLUTIONS

Because people get mad at me for just pointing out problems…

Solution #1: don’t give attackers encrypted

data

•  This isn’t always possible

•  When you can, give an index, a session, or

something like that, rather than letting an attacker

store state

Or, to put it another way…

Solution #2: When you give them encrypted

data, validate it

•  “The cryptographic doom principle”

•  Calculate a HMAC and send it with the encrypted

data

– Validate the HMAC before attempting to decrypt

•  Alternatively, use authenticated encryption, for

example, "GCM Mode"

•  Coming soon: CAESAR

– CAESAR: Competition for Authenticated Encryption:

Security, Applicability, and Robustness

“The cryptographic doom principle”

Solution #3: Never encrypt data with the

same key and IV

•  Almost every cipher fails if you use the same key

and IV

•  Change keys when it makes sense, and change IVs

every time

One last ski instructor, then we’re done!

THAT’S ALL!

Links + Contact info

•  Me:
– Ron Bowes <ron.bowes@leviathansecurity.com>

– @iagox86

–  http://www.skullsecurity.org

–  http://www.leviathansecurity.com

•  Tools:
–  https://www.github.com/iagox86/prephixer

–  https://www.github.com/iagox86/poracle

–  https://www.github.com/iagox86/hash_extender

–  https://www.github.com/iagox86/unzipher

•  This talk will be on https://www.github.com/iagox86 as
well

