

Agenda

- IPv6 address fundamentals
- ICMPv6 Router Advertisement
- IPv6 address autoconfiguration & processes
- Security concerns and threats
- IPv6 First Hop Security
- IPv6 Attack tools
- Resources
- IPv6 FHS mitigation demonstration

Pv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

What is an IPv6 Address?

- IPv6 addresses are very different than IPv4 addresses in the size, numbering system, and delimiter between the numbers
 - 128bit -vs- 32bit
 - hexadecimal -vs- decimal
 - colon and double colon -vs- period (or "dot" for the real geeks)
- Valid IPv6 addresses are comprised of hexadecimal numbers (0-9 & a-f), with colons separating groups of four numbers, with a total of eight groups

(each group is known as "quads", "quartets", or "chunks")

2001:0db8:1010:61ab:f005:ba11:00da:11a5

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

3

IPv6 default for subnet

- Based on the default definition an IPv6 address is logically divided into two parts: a 64-bit network prefix and a 64-bit interface identifier (IID)
- Therefore, the default subnet size is /64
- 2001:0db8:1010:61ab:f005:ba11:00da:11a5/64

64bits for Network Identifier

64bits for Interface Identifier

Prefix Length

 A single /64 network yields 18 billion-billion possible addresses

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrel

Interface ID from Random Number

- RFC 4941 Privacy Extensions for Stateless Address Autoconfiguration in IPv6
- Initial IID is derived based on mathematical computation to create a "random 64bit number" and appended to prefix to create a GUA
- An additional but different 64bit number is computed, appended to prefix, and tagged "temporary" for a 2nd GUA
- Temporary GUA should be re-computed on a frequent basis
- Temporary GUA is used as primary address for communications, as it is considered "more secure"

States of an autoconfigured address

- Tentative address is in process of verification for uniqueness and is not yet available for regular communications
- Valid address is valid for use in communication based on Preferred and Deprecated status
- Preferred address is usable for all communications
- Deprecated address can still be used for existing sessions, but not for new sessions
- Invalid an address is no longer available for sending or receiving

Duplicate Address Detection (DAD)

- When a node initially assigns an IPv6 address to its interface, it must check whether the selected address is unique
- If unique, the address is configured on interface
- The node sends a multicast Neighbor Solicitation message with the:
 - dest MAC of 33:33:<last 32bits of IPv6 mcast addr>
 - dest IPv6 addr of ff02::1:ff<last 24bits of proposed IPv6 addr>
 - source IPv6 of "::" (IPv6 unspecified addr)

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrel

Link-Local address basics

- Each interface must have one (and only one) link-local address (generally autoconfigured by OS)
- Can/may be same on any/all interfaces
- Zone ID or Scope ID is used to differentiate which interface is to be used for outbound communications
- Zone ID is appended to link-local address when used for outbound communications

ping fe80::22c:8a5c:12ab:370f%vlan1 - switch ping fe80::22c:8a5c:12ab:370f%12 - Windows ping fe80::22c:8a5c:12ab:370f%eth0 - Linux ^destination host to ping ^intf to go out

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrel

- Router Advertisement (RA) [key components]
 - M flag managed address configuration flag (for Stateful (DHCPv6) autoconfig)
 - O flag other configuration flag (for Stateless DHCPv6 autoconfig)
 - Prf flag router preference flag (ska priority)
 - Router Lifetime lifetime associated with the default router
 - Prefix Length number of bits in the prefix
 - A flag autonomous address-configuration flag (for SLAAC)
 - L flag on-link flag
 - Valid Lifetime length of time the address is valid for use in preferred and deprecated states
 - Preferred Lifetime length of time the address is valid for new communications
 - Prefix IPv6 address prefix

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carre

For additional info, see RFC 4861

Address Autoconfiguration Method	ICM RA (Typ Fla M Flag	gs	ICM RA (Typ ICMPv6 Prefix A Flag	oe 134) Option (Info	Prefix Derived from	Interface ID Derived from	Other Configuration Options (DNS, time, tftp, etc)	Number of IPv6 Addresses on interface
Link-Local (always configured)	N/A	N/A	N/A	N/A	Internal (fe80::/64)	M-EUI-64 or Privacy	Manual	1
Manual assigned	Off	Off	Off	On	Manual	Manual	Manual	2 (LL, manual)
SLAAC	Off	Off	On	On	RA	M-EUI-64 or Privacy	Manual	3 (LL, IPv6, IPv6 temp)
Stateful (DHCPv6)	On	N/R	Off	On	DHCPv6	DHCPv6	DHCPv6	2 (LL, DHCPv6)
Stateless DHCPv6	Off	On	On	On	RA	M-EUI-64 or Privacy	DHCPv6	3 (LL, IPv6, IPv6 temp)
Combination Stateless & DHCPv6	On	N/R	On Jeffrey L. Carre	On	RA and DHCPv6	M-EUI-64 or Privacy and DHCPv6	DHCPv6	4 (LL, IPv6, IPv6 temp, DHCPv6)


```
Router Advertisement packet
B Internet Control Message Protocol v6
  Type: Router Advertisement (134)
   Code: 0
  Checksum: 0xd//1 [correct]
   Cur hop limit: 64
 ⊟ Flags: 0xc8
    1... - Managed address configuration: Set
    .1.. .... - Other configuration: Set
 u ICMPv6 Option (Prefix information : 2001:db8:bad:f00d::/64)
    Type: Prefix information (3)
    Length: 4 (32 bytes)
    Prefix Length: 64
  H Flag: 0xc0
     1... - On-link flag(t): Set
      .1.. ... - Autonomous address-configuration flag(A): Set
      .... - Router address flag(R): Not set
      ...0 0000 - Reserved: 0
    Valid Lifetime: 65
    Preferred Lifetime: 25
    Reserved
    Prefix: 2001:db8:bad:100d:: (2001:db8:bad:100d::)
```


Key difference in DHCP/DHCPv6

- Default gateway
 - DHCP configurable Router option in scope
 - DHCPv6 no configurable Router option in scope (possible future, but no client OS support yet)
- An IPv6 node derives its default gateway from the router's Link-Local address when the L flag is set in the Prefix information field of an RA

(! not from the network prefix!)

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

19

HP switch - IPv6 VLAN config

vlan 1

ipv6 enable

ipv6 address fe80::1 link-local

ipv6 address 2001:db8:1ab:ba5e::1/64

ipv6 nd ra managed-config-flag

ipv6 nd ra max-interval 60

ipv6 nd ra min-interval 20

ipv6 nd ra prefix 2001:db8:1ab:ba5e::/64 40 20 no-autoconfig

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

Cisco switch - IPv6 VLAN config

interface Vlan1

ipv6 address FE80::2 link-local

ipv6 address 2001:DB8:1AB:BA5E::2/64

ipv6 enable

ipv6 nd prefix 2001:DB8:1AB:BA5E::/64 35 15

ipv6 nd other-config-flag ipv6 nd ra interval 65 25

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

21

Security concerns

- If EUI-64 based address, can determine manufacturer of interface, which may lead to what type of device it is, and where in the network in may be located.
- Since IPv6 is enabled by default in many operating systems and devices, simple scan of network will provide tons of info
- Many "tools" already available for exploitation of devices/systems
- Easy to spoof clients with rogue RA
- If there is a "Temporary" IPv6 address (in addition to a "regular" configured IPv6 address), it is used for outbound communications by the client. "Temporary" IPv6 addresses can change frequently.

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

IPv6 Threats to access networks

- IPv6 uses ICMPv6 for many LAN operations
 - · Stateless auto-configuration
 - IPv6 equivalent of IPv4 ARP
- New multicast addresses that can enable an attacker to identify key resources on a network
- Spoofed RAs can renumber hosts, have hosts "drop" an IPv6 address, or initiate a MITM attack with redirect
- DHCPv6 spoofing
- Force nodes to believe all addresses are onlink

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

23

ICMPv6 is Required for IPv6 Description Destination unreachable 1 2 Packet too big **Traceroute** Time exceeded Parameter problem Ping 128 Echo Request Multicast Listener 129 Echo Reply Discovery 130 Multicast Listener Query 131 Multicast Listener Report 132 Multicast Listener Done **Prefix Advertisement** 133 Router Solicitation (RS) 134 Router Advertisement (RA) 135 Neighbor Solicitation (NS) 136 Neighbor Advertisement (NA) **ARP** replacement 137 Redirect message

IPv6 First Hop Security

- When IPv6 is implemented on the LAN (access layer), certain switch ports are known to have only traditional end-node user devices attached (computers, phones, printers, etc).
- It can be safely assumed that these end-node user devices will not serve as either a router or DHCPv6 server.
- Therefore, a best practice recommendation is for switches to be configured in such a way that both RAs and DHCPv6 server packets are filtered on these end-node user ports to protect the network link operations.

Pv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

25

IPv6 infrastructure security options

Aka – First Hop Security

Manufacturer	DHCPv6 Snooping	ND Snooping	IPv6 Source Guard	RA-Guard (RFC6105)	SeND (RFC3971)
HP – Comware 5 (former 3Com/H3C)	Yes	Yes	Yes	Yes (ND Detection)	No
HP – ProVision ASIC platforms	No	No		Yes	No
Cisco IOS 12.2 (older 3560/3750)	No	No		No (manual ACL)	Yes
Cisco IOS 15.x (newer 3750E)	Yes (DHCPv6 Guard)	Yes		Yes	Yes
Juniper JUNOS (EX series)	<future></future>		<future></future>	<future></future>	

Source – manufacturer public documents

Pv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

RA-Guard

- HP ProVision
 - switch(config)# ipv6 ra-guard ports <intf>
 - specific ports that will block RA's
- Cisco IOS
 - switch(config-if)# ipv6 nd raguard attach-policy
 - · applied on specific ports that will accept RA's
- ❖Not a widely implemented feature as of yet
- ❖Can be circumvented by modifying IPv6 Extension Headers
 - http://tools.ietf.org/html/draft-gont-v6ops-ra-guardevasion-01

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

27

Rogue RA & DHCPv6 port ACL

- ipv6 access-list stop-ra-dhcpv6
 - remark "deny Router Advertisements"
 - deny icmp any any router-advertisement
 - remark "deny all DHCPv6 server traffic to clients"
 - deny udp any any eq 546
 - deny udp any any eq 547
 - permit ipv6 any any
- interface 19
 - ipv6 access-group stop-ra-dhcpv6 in
- * Example for HP ProVision

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

Rogue RA & DHCPv6 port ACL

- ipv6 access-list stop-ra-dhcpv6
 - remark deny Router Advertisements
 - · deny icmp any any router-advertisement
 - remark deny all DHCPv6 server traffic to clients
 - deny udp any eq 547 any eq 546
 - · permit any any
- interface gigabitethernet 1/0/1
 - switchport
 - ipv6 traffic-filter stop-ra-dhcpv6 in
- * Example for Cisco IOS

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrel

29

IPv6 ACL implicit rules

- Manufacturers default implicit ACL rules are not always the same, be careful!
- Cisco IOS: implicit entries exist at the end of each IPv6 ACL to allow neighbor discovery and deny all other IPv6:
 - permit icmp any any nd-na
 - · permit icmp any any nd-ns
 - deny ipv6 any any
 - therefore if you add 'deny ipv6 any any log' at the end of an IPv6 ACL, you must manually re-apply the 2 ND permits before the deny.
- Provision: implicit entry denies all other IPv6
- Comware: implicit entry allows all other IPv6

DHCPv6 – Attack mitigation

- Rogue DHCPv6 server providing malicious information (ADVERTISE or REPLY) to users
 - DHCPv6 Snooping
 - Port ACL (PACL) to prevent rogue RAs and DHCPv6 from user ports
- Pool consumption attack / many SOLICIT messages
 - ND Snooping
 - IPv6 Source Guard
 - Also throttle these messages to lower bandwidth
- Scanning
 - Use randomized node identifiers or larger pool if leased addresses are assigned sequentially

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

31

Unknown external connections

- Deny packets for transition techniques / tunnels not in use
 - Deny IPv4 protocol 41 forwarding unless that is exactly what is intended (example: 6to4, 6in4, ISATAP, and others)
 - Deny UDP 3544 forwarding unless you are using Teredo-based tunneling
 - Deny UDP 3653 forwarding unless you are using Freenet6 tunneling

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrell

Network scanning

• 2001:0db8:1010:61ab:f005:ba11:00da:11a5/64

64bits for Network Identifier

64bits for Interface Identifier

refix Length

- Since prefix is defined, don't scan there, need only scan lower 64 bits (18BB #'s!!!!!!)
- Scan last section for v4 looking addresses (0-254)
- Scan middle for "fffe", then scan for known OID
- Scan for known hex words
- Scan for IPv4 address converted to hex
 - 10.1.1.1 = 0a01:0101 -or- a01:101 -or- 10:1:1:1

33

IPv6 Attack tools

- Attack Toolkits
 - THC-IPv6 30 tools!
 - http://www.thc.org/thc-ipv6/
 - SI6 Networks IPv6 Toolkit 2 dozen tools!
 - http://www.si6networks.com/tools/ipv6toolkit/
- Scanners
 - Nmap, halfscan6 (older)
- Packet forgery
 - Scapy
- DoS Tools (older)
 - 6tunneldos, 4to6ddos, Imps6-tools

IPv6 Infrastructure Security v1.3 - Copyright © 2014 Jeffrey L. Carrel

