SHARKFEST'14 WIRESHARK DEVELOPER AND USER CONFERENCE JUNE 16-20 2014 DOMINICANUMIVERSITY

B6: GET /started/with/ HTTP Analysis

Robert Bullen Application Performance Engineer Blue Cross Blue Shield of Minnesota robert_d_bullen@bluecrossmn.com

The BCBSMN Experience

- Who is Blue Cross Blue Shield of Minnesota?
 - We are the first "Blue" health plan in the nation & the largest in Minnesota.
 - We have 2.6 million members across all 50 states and 3,500 employees.
 - Our administrative costs are less than 10 cents on the dollar, among lowest in the country.
- What do I do there?
 - I perform deep dive packet analysis for a few reasons:
 - To comprehend application functionality for modeling in our APM solution.
 - Troubleshooting.
 - Troubleshooting.
 - Troubleshooting.
 - I co-architect, implement, and administer our Shared Visibility Fabric (SVF).
 - I implement and administer our packet capture appliances.
 - I code in "down" time.

- Simple
 - It is stateless.
 - It is a ping/pong request/response protocol (ignore pipelining).
 - It uses human-readable requests, responses, headers, and sometimes payloads.

- Distributed/Multitiered
 - Services can be load balanced.
 - Connections can be forward and/or reverse proxied.
 - Static content can be separated and cached in a different tier from dynamic content.
 - Content can be localized through a CDN.
 - Resources can be redirected (e.g. URL shrinkers rely on this).
 - Applications might be composites that pull from multiple sites.

- Flavored
 - HTTP 1.0
 - HTTP 1.1 (this is the important one)
 - WebSockets (sorta)
 - SPDY/HTTP 2.0

- Ubiquitous
 - Web and application servers serving HTML.
 - Middle tier application servers publishing SOAP services.
 - Back-end SOA buses accepting SOAP/XML calls as a façade to legacy services.
 - Internet RESTful APIs to database-like resources.
 - Clients and servers are readily available as standalone programs or as libraries in most programming/scripting languages.

- Complex
 - Applications can utilize cookies or HTML hidden fields for statefulness
 - Applications can add caching for performance
 - Applications can add concurrency for throughput
 - Applications can choose to encode content:
 - Compressed (Content-Encoding)
 - Chunked (Transfer-Encoding)
 - More and more often encryption using SSL/TLS is in place at every tier (a.k.a. HTTPS)
 - Analysis gets trickier but is still possible.
 - Remember all those distributed/multitier hops? You'll need keys for each of those tiers you with to analyze.

eeny Leenya	nt	
et / ettra	.1	
opportion:	Est. Wir Caller K. Ur B	
ccent: text	<pre>//tellanolication/xhtml+xml annlication/xmlid=8.9 image/webp.*/*id=8.8</pre>	
ser-Agent:	Mozilla/5.8 (Windows WT 6.1: WOWE4) ApplewebKit/537.36 (KHTML, like Gecko) Chrome/35.8.1916.114 Safari/537.36	
ccept-Encod	/ing: grip,deflate,sdch	
ccept-Langu	age: en-U\$,en;q=0.8	
TTP/1.1 200	D OK	
erver: clou	idflaré-nginx	
ate: Mon, e	/9 Jun 2014 22:00:35 GMT	
ontent-Type	: text/html	
ransfer-Enc	oding: chunked	
onnection:	Keep-alive	
et-Cookle:		
Demonstrat P	shark.org; Httpuniy	
Erama Onti	· FTF/5.3.15-1000/103.11	
-Mod. Fagesr	Mila: 2010/01/01/01	
arv: Accent	-Friending	
ache-Contro	1: max-age+0, no-cache	
F-RAY: 1380	198526c5d0436-ORD	
ontent-Enco	ding: gzip	
09		
09 l	I.n.6VXj.Kb6+td=b'.Q.S.M.nE.w 1.~<\$&1q:d6t	
05 b NgH.v.L1.	I.n.6vXj.Kb6+.,:d=b'.Q.S.M.nE.w 1.~<\$&1Q:d6! d".N^;.IAPUi"XZ[=^.fK.F&rF(p.	
05 NgH.v.L1.	I.n.6	
09 NgH.v.L1.	I.n.6	
H09 NgH.v.L1. N3 L.Hni.D.C.	N.N.GVXJ.Kb.G+.,:d=.b'.Q.S.M.NE.w 1.~ <s&lq. :d6(<br="">d".N^j.IAPUi"XZ[w^.fK.F&rF[p. &.C.dG .I.YC.mXZ:4.abb.k'S sF.b1b/.'W6.@.".A.Ber.d@</s&lq.>	•
NgH.v.L1.	I.n.6	-
NgH.v.L1 NgH.v.L1 N3. IHniD.F. I	I.n.6	•
09 NgH. v. L1. N 3 Hni D. C. (I.n.6	

URIs

HTTP Request Methods

- Three most common:
 - GET
 - Requests a representation of the specified resource. Requests using GET should only retrieve data and should have no other effect.
 - I equate this to a deterministic, non-modifying function (idempotent).
 - POST
 - Requests that the server accept the entity enclosed in the request as a new subordinate of the web resource identified by the URI. The data POSTed might be, as examples, an annotation for existing resources; a message for a bulletin board, newsgroup, mailing list, or comment thread; a block of data that is the result of submitting a web form to a data-handling process; or an item to add to a database.
 - I like to think of this as a nondeterministic, modifying procedure invocation.
 - CONNECT
 - Instructs an intermediate proxy to create a tunnel to the remote host.
- Others:
 - HEAD, PUT, DELETE, TRACE, OPTIONS, PATCH

HTTP Response Status Codes

- 1xx—Informational
 - 100 Continue—The request header is valid and the client may proceed with sending the request payload.
- 2xx—Successful
 - 200 OK—Need I say more?
 - 202 Accepted—The request has been queued; check back later.
- 3xx—Redirection
 - 302 Found—The requested resource has been temporarily moved and the browser should issue a request to the URL supplied in the Location response header.
 - 304 Not Modified—The requested resource has not been modified and the browser should read from its local cache instead.
- 4xx—Client Error
 - 401 Unauthorized—Anonymous clients are not authorized to view the requested content and must provide authentication information in the WWW-Authenticate request header.
 - 404 Not Found—The requested resource does not exist on the server.
- 5xx Server Error
 - 500 Internal Server Error—Oftentimes this is the result of an uncaught exception (i.e. an unexpected and unhandled condition or a system error such as out of memory).

HTTP Is Layer 7

SSL Decryption

- You must be in possession of the private key.
 - Wireshark supports PEM or PKCS#12 format. I wrote a paper covering terminology, key file formats, and extracting private keys from those file formats, which you can download at <u>http://goo.gl/w2r7kt</u>.
 - The negotiated cryptography algorithm must not be Diffie-Hellman.
- You must configure Wireshark with server:port to private keys mappings.
- The client key exchange must be present in the capture.
 - The client key exchange occurs during the SSL handshake.
 - Rarely you may see a client and server renegotiate in the middle of an established connection.
 - SSL has a performance optimization called session caching where a client and server can reuse previously agreed upon session keys from different conversations.

URL Redirection

http://www.hanselman.com/blog/ThisURLShortenerSituationIsOfficiallyOutOfControl.aspx

#	Result	Prot	Host	URL	Body	Cachi	Content	Process	¢
№ 6	301	HTTP	slate.me	/1h0svt8	120	privat	text/htm	fiddler	
S 7	301	HTTP	slate.trib.al	/8OfbdvM	101		text/htm	fiddler	
⊾ 8	301	HTTP	slate.me	/1tByJQz	120	privat	text/htm	fiddler	
№ 9	301	HTTP	slate.trib.al	/IOYnwof	101		text/htm	fiddler	
L 10	301	HTTP	slate.me	/1kZ76jq	120	privat	text/htm	fiddler	
ls 12	301	HTTP	slate.trib.al	/QjWEhrI	95		text/htm	fiddler	
5 13	301	HTTP	goo.gl	/qF0xUk	323	no-ca	text/htm	fiddler	
\$ ≥14	200	HTTP	www.slate.com	/blogs/future_tense/	175,	max	text/htm	fiddler	

The Waterfall Diagram

- The Waterfall diagram is the best way to start analyzing single client web page performance.
- All the major browsers now come with debugging tools baked right in ("F12" tools) that present a waterfall diagram of (among many other things).
- Third party tools are also available:
 - HTTP Watch—"HTTP Sniffer" (<u>http://httpwatch.com</u>)
 - Fiddler—"Web application debugging proxy" (<u>http://www.telerik.com/fiddler</u>)
- The information gathered by "F12" tools can be saved to an HTTP archive (HAR) file.
- A Python script called pcap2har (<u>https://github.com/andrewf/pcap2har</u>) can be used to convert PCAPs to HAR files.

sharkfest.wireshark.org Home Page Load Waterfall

Reverse Proxies & Client Identification

Reverse Proxies & Client Identification

XFF, BIGIP

- X-Forwarded-For: 192.168.1.1
- BIGipServerLive_pool=375537930.544.0000
 - Decoded: IP Address: 10.65.98.22 Port: 34

Top Performance Bottlenecks

- HTML Content
 - Improper caching of static objects
 - Requiring authentication for *every* object on a page
- Client/Server Configuration
 - Low concurrency
 - Poor TCP connection reuse
 - Poor SSL session caching
- Busy server
 - High think time
 - High response transmission time (mid-stream delays)
- Intermediate Devices
 - HTTP proxies or WAFs introducing latency
 - Load balancer challenges
 - Unsynchronized object tags on pool servers
 - Client port collisions

Resources

- HTTP Introduction—<u>http://www.httpwatch.com/httpgallery/</u>
- SSL Analysis—

http://sharkfest.wireshark.org/sharkfest.09/AU2_Blok_SSL_Troubles hooting_with_Wireshark_and_Tshark.pps