
B6: GET /started/with/ HTTP Analysis

Robert Bullen
Application Performance Engineer

Blue Cross Blue Shield of Minnesota

robert_d_bullen@bluecrossmn.com

The BCBSMN Experience

 Who is Blue Cross Blue Shield of Minnesota?

‒ We are the first “Blue” health plan in the nation & the largest in Minnesota.
‒ We have 2.6 million members across all 50 states and 3,500 employees.

‒ Our administrative costs are less than 10 cents on the dollar, among lowest in the

country.

 What do I do there?

‒ I perform deep dive packet analysis for a few reasons:

• To comprehend application functionality for modeling in our APM solution.

• Troubleshooting.

• Troubleshooting.

• Troubleshooting.

‒ I co-architect, implement, and administer our Shared Visibility Fabric (SVF).

‒ I implement and administer our packet capture appliances.

‒ I code in “down” time.

HTTP Is…

 Simple

‒ It is stateless.

‒ It is a ping/pong request/response protocol (ignore pipelining).

‒ It uses human-readable requests, responses, headers, and sometimes

payloads.

HTTP Is…

 Distributed/Multitiered

‒ Services can be load balanced.

‒ Connections can be forward and/or reverse proxied.

‒ Static content can be separated and cached in a different tier from

dynamic content.

• Content can be localized through a CDN.

‒ Resources can be redirected (e.g. URL shrinkers rely on this).

‒ Applications might be composites that pull from multiple sites.

HTTP Is…

 Flavored

‒ HTTP 1.0

‒ HTTP 1.1 (this is the important one)

‒ WebSockets (sorta)

‒ SPDY/HTTP 2.0

HTTP Is…

 Ubiquitous

‒ Web and application servers serving HTML.

‒ Middle tier application servers publishing SOAP services.

‒ Back-end SOA buses accepting SOAP/XML calls as a façade to legacy

services.

‒ Internet RESTful APIs to database-like resources.

‒ Clients and servers are readily available as standalone programs or as

libraries in most programming/scripting languages.

HTTP Is…

 Complex

‒ Applications can utilize cookies or HTML hidden fields for statefulness

‒ Applications can add caching for performance

‒ Applications can add concurrency for throughput

‒ Applications can choose to encode content:

• Compressed (Content-Encoding)

• Chunked (Transfer-Encoding)

‒ More and more often encryption using SSL/TLS is in place at every tier

(a.k.a. HTTPS)

• Analysis gets trickier but is still possible.

• Remember all those distributed/multitier hops? You’ll need keys for each of
those tiers you with to analyze.

HTTP Is…

URIs

 http://username:password@example.com:8042/over/there/index.dtb?type=animal&name=narwhal#nose

 __/ _______________/ _________/ __/ ___/ _/ ______________________/ __/

 | | | | | | | |

 | userinfo hostname port | | query fragment

 | ________________________________/_____________|____|/ __/ __/

 | | | | | | |

 | | | | | | |

scheme authority path | | interpretable as keys

 ___|____|/ ____/ _____/

 | | | | |

 hierarchical part | | interpretable as values

 | |

 interpretable as filename |

 |

 |

 interpretable as extension

HTTP Request Methods

 Three most common:

‒ GET

• Requests a representation of the specified resource. Requests using GET
should only retrieve data and should have no other effect.

• I equate this to a deterministic, non-modifying function (idempotent).

‒ POST

• Requests that the server accept the entity enclosed in the request as a new
subordinate of the web resource identified by the URI. The data POSTed
might be, as examples, an annotation for existing resources; a message for a
bulletin board, newsgroup, mailing list, or comment thread; a block of data that
is the result of submitting a web form to a data-handling process; or an item to
add to a database.

• I like to think of this as a nondeterministic, modifying procedure invocation.

‒ CONNECT

• Instructs an intermediate proxy to create a tunnel to the remote host.

 Others:

‒ HEAD, PUT, DELETE, TRACE, OPTIONS, PATCH

HTTP Response Status Codes

 1xx—Informational
‒ 100 Continue—The request header is valid and the client may proceed with sending

the request payload.

 2xx—Successful
‒ 200 OK—Need I say more?

‒ 202 Accepted—The request has been queued; check back later.

 3xx—Redirection
‒ 302 Found—The requested resource has been temporarily moved and the browser

should issue a request to the URL supplied in the Location response header.

‒ 304 Not Modified—The requested resource has not been modified and the browser
should read from its local cache instead.

 4xx—Client Error
‒ 401 Unauthorized—Anonymous clients are not authorized to view the requested

content and must provide authentication information in the WWW-Authenticate request
header.

‒ 404 Not Found—The requested resource does not exist on the server.

 5xx - Server Error
‒ 500 Internal Server Error—Oftentimes this is the result of an uncaught exception (i.e.

an unexpected and unhandled condition or a system error such as out of memory).

HTTP Is Layer 7

Layer 3—Network

Layer 4—Transport

Layer 5—Session

Layer 6—Presentation

Layer 7—Application

IP (fragments)

TCP (segments)

SSL (records)

HTTP

SSL Decryption

 You must be in possession of the private key.

‒ Wireshark supports PEM or PKCS#12 format. I wrote a paper covering

terminology, key file formats, and extracting private keys from those file

formats, which you can download at http://goo.gl/w2r7kt.

‒ The negotiated cryptography algorithm must not be Diffie-Hellman.

 You must configure Wireshark with server:port to private keys

mappings.

 The client key exchange must be present in the capture.

‒ The client key exchange occurs during the SSL handshake.

‒ Rarely you may see a client and server renegotiate in the middle of an

established connection.

‒ SSL has a performance optimization called session caching where a

client and server can reuse previously agreed upon session keys from

different conversations.

http://goo.gl/w2r7kt
http://goo.gl/w2r7kt

URL Redirection

http://www.hanselman.com/blog/ThisURLShortenerSituationIsOfficiallyOutOfControl.aspx

http://www.hanselman.com/blog/ThisURLShortenerSituationIsOfficiallyOutOfControl.aspx

The Waterfall Diagram

 The Waterfall diagram is the best way to start analyzing single client

web page performance.

 All the major browsers now come with debugging tools baked right

in (“F12” tools) that present a waterfall diagram of (among many

other things).

 Third party tools are also available:

‒ HTTP Watch—”HTTP Sniffer” (http://httpwatch.com)

‒ Fiddler—”Web application debugging proxy”
(http://www.telerik.com/fiddler)

 The information gathered by “F12” tools can be saved to an HTTP
archive (HAR) file.

 A Python script called pcap2har

(https://github.com/andrewf/pcap2har) can be used to convert

PCAPs to HAR files.

http://www.httpwatch.com/
http://www.telerik.com/fiddler
https://github.com/andrewf/pcap2har

Reverse Proxies & Client Identification

Client A

Client B

Client C

Reverse

Proxy

Web

Server

Virtual

IP

Server IP

Self IP

1. Client ephemeral port propagation

2. X-Forwarded-For header

3. Proxy-added cookie header (encoded)

4. Payload matching

Reverse Proxies & Client Identification

Client A

Client B

Client C

Reverse

Proxy

Web

Server

Virtual

IP

Server IP

Self IP

1. Client ephemeral port propagation

2. X-Forwarded-For header

3. Proxy-added cookie header (encoded)

4. Payload matching

XFF, BIGIP

 X-Forwarded-For: 192.168.1.1

 BIGipServerLive_pool=375537930.544.0000

‒ Decoded: IP Address: 10.65.98.22 Port: 34

Top Performance Bottlenecks

 HTML Content

‒ Improper caching of static objects

‒ Requiring authentication for every object on a page

 Client/Server Configuration

‒ Low concurrency

‒ Poor TCP connection reuse

‒ Poor SSL session caching

 Busy server

‒ High think time

‒ High response transmission time (mid-stream delays)

 Intermediate Devices

‒ HTTP proxies or WAFs introducing latency

‒ Load balancer challenges

• Unsynchronized object tags on pool servers

• Client port collisions

Resources

 HTTP Introduction—http://www.httpwatch.com/httpgallery/

 SSL Analysis—
http://sharkfest.wireshark.org/sharkfest.09/AU2_Blok_SSL_Troubles

hooting_with_Wireshark_and_Tshark.pps

http://www.httpwatch.com/httpgallery/
http://www.httpwatch.com/httpgallery/
http://www.httpwatch.com/httpgallery/
http://sharkfest.wireshark.org/sharkfest.09/AU2_Blok_SSL_Troubleshooting_with_Wireshark_and_Tshark.pps
http://sharkfest.wireshark.org/sharkfest.09/AU2_Blok_SSL_Troubleshooting_with_Wireshark_and_Tshark.pps
http://sharkfest.wireshark.org/sharkfest.09/AU2_Blok_SSL_Troubleshooting_with_Wireshark_and_Tshark.pps

