SHARKFEST 2015 WIRESHARK DEVELOPER AND USER CONFERENCE

Analyzing Huge Data for Suspicious Traffic

Christian Landström, Airbus DS

Topics

- Overview on security infrastructure
- Strategies for network defense
- A look at malicious traffic incl. Demos
- How Wireshark can help

House rules

Tool-Box

Defaults:

Proxy servers with authentication Logging, Monitoring, (SIEM)

Layers of Defense: Firewalls / WAFs Intrusion Detection / Intrusion Prevention NIDS/NIPS/HIDS/HIPS Malware Sensors / Sandboxing / "APT-devices"

Overview on sec. infrastructure

- Depending on
 → area of protection
 → type of attack
- External: Internet facing
- Internal: non-Inet facing

External I

Typical protection for DMZ systems: Packet filter \rightarrow IPS / APT device \rightarrow local (host-)firewall

Demo #1: DMZ Service

- Monitoring the request size in this example reveals some huge request resulting in a new connection initiated by the FTP Server

source	Destination	Protocor	3126	into
192.168.163.130	192.168.163.128	TCP	74	41779-21 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSva]
192.168.163.128	192.168.163.130	FTP	108	Response: 220 3Com 3CDaemon FTP Server Version 2.0
192.168.163.130	192.168.163.128	FTP	1000	Request: USER 5FFy8o/Geersu!2E,ND3?[4gz)M5V,CC_MzJuMv}a]1C<*[mF
192.168.163.128	192.168.163.130	TCP	62	1086-4444 [SYN] Seq=0 win=64240 Len=0 MSS=1460 SACK_PERM=1
192.168.163.1	192.168.163.128	TCP	66	56571-21 [SYN] Seq=0 Win=8192 Len=0 M55=1460 W5=256 SACK_PERM=1
192.168.163.128	192.168.163.1	FTP	96	Response: 220 3Com 3CDaemon FTP Server Version 2.0
192.168.163.1	192.168.163.128	FTP	70	Request: USER anonymous
192.168.163.128	192.168.163.1	FTP	87	Response: 331 User name ok, need password
192.168.163.1	192.168.163.128	FTP	75	Request: PASS anon@anon.anon
192.168.163.128	192.168.163.1	FTP	74	Response: 230 User logged in
192.168.163.1	192.168.163.128	FTP	60	Request: SYST
192.168.163.128	192.168.163.1	FTP	73	Response: 215 UNIX Type: L8
192.168.163.1	192.168.163.128	FTP	60	Request: FEAT
192.168.163.128	192.168.163.1	FTP	76	Response: 211- Feature listing
107 160 162 170	103 168 163 1	CTD	0.0	Decompose MORA

Demo #1: DMZ Service

Knowing your applications' behavior may lead to valid thresholds to reveal anomalies e.g. based on packet length, payload entropy or other factors

External II

Perimeter defense: Monitoring all protocols

- Know your systems' configuration
- In-depth understanding of App behavior
- Monitor the events from sec. devices
- Correlate events after sec. alert

→ WebServer accessing other servers after "unsuccessful" exploit?

Demo #2: "Encrypted" sessions

Watch for protocol anomalies e.g. missing HTTP dissector information on HTTP ports containing no valid requests or malformed data

rel.T	ime		So	urce					Dest	inat	ion				Protocol	Size		Info				
0.0	0000	0000	019	92.	168	.13	1.99		192	2.1	68.	131	.12	9	TCP		62	1178-80	[SYN]	Seq=0) win=64	4240
0.0	000	2770	019	32.	168	.13	1.12	9	192	2.1	68.	131	. 99		TCP		62	80-1178	[SYN,	ACK]	5eq=0 /	Ack=1
0.0	000	3320	019	92.	168	.13	1.99		192	2.1	68.	131	.12	9	TCP		54	1178-80	[ACK]	Seq=1	Ack=1	win=
0.0	18	7730	019)2	168	.13	1.12	9	1.92	2.1	68.	131	. 99		TCP		58	80→1178	[PSH,	ACK]	Seq=1	ACK=1
0.1	344	1550	019	92.3	168	.13	1.99		192	.1	68.	131	.12	3	TCP		54	1178→80	[ACK]	Seq=1	Ack=5	win=
																		ti ti	i	: 30-		
00	0c	29	94	82	d4	00	0c	29	74	9c	34	08	00	45	00))t.4E				
00	2c	ob	fe	40	00	40	06	a6	98	c0	a8	83	81	c0	a8	@	. @.					
83	63	00	50	04	9a	c2	52	31	7e	fe	04	11	52	50	18	.C.P.	R	1~RP	2			
72	10	a2	6f	00	00	ob	01	00	00							ro.						

Demo #2: "Encrypted" sessions

Another example for pretended encrypted traffic not containing a valid SSL handshake

Sample: Using relative Sequence numbers try: tshark -r <tracefile> -Y "tcp.dstport==443 and tcp.len > 0 and tcp.seq == 1 and !ssl.record"

rel.Time		So	urce	Ē				Dest	inati	ion				Protocol	Size	Info			
0.0000	000	01	92.	168	.13	1.99		192	2.1	68.:	131.	.129)	TCP	62	1178-443	[SYN]	Seq	=0
0.0002	770	01	92.:	168	.13	1.12	9	192	2.1	68.1	131.	. 99		TCP	62	443-1178	[SYN,	ACK]
0.0003	320	001	92.	168	.13	1.99		192	2.10	68.3	131.	129)	TCP	54	1178-+443	[ACK]	Sea	=1
0.0187	730	001	92.	168	.13	1.12	9	19.	2.1	68.	1.31.	. 99		SSL	58	Continuat	tion D	ata	
0.1344	550	01	92.	168	.13	1.99	N.	192	2.1	68.1	131.	129		TCP	54	1178-443	[ACK]	seq	1
																111	1998 - N		
00 OC	29	94	82	d4	00	0c	29	74	9c	34	08	00	45	00))t.4E.			_
00 2c	Ob	fe	40	00	40	06	aб	98	c0	a8	83	81	c0	a8	.,@.@.				
83 63	01	bb	04	9a	c2	52	31	7e	fe	04	11	52	50	18	. C R	1~RP.			
72 10	a1	04	00	00	Ob	01	00	00							F				

Internal I

Incoming traffic critical and monitored **But:**

Sessions going out are trusted Mail / Web / FTP etc.

How to spot outgoing malicious stuff

Demo #3: Surfing the web

Also valid protocol requests may hint for an anomaly based on irregular behavior or other indicators

rel.Tir	ne	Sour	ce		2000		Dest	inati	on		-		Protocol	Size		Info	-		
134.	68483	85192	.168	3.13	1.99		192	.16	8.1	31.	12	9	HTTP		293	POST	//b	XUZG2IZBQANwwZCWEqQ8g6flSMCjaoI-tc_1Gr8/ HTT	P/1.1
134.	78220	50192	1.168	8.13	1.99		192	.16	8.1	131.	.129	9	HTTP		293	POST	//b)	XUZG2IZBqANwwzCWEqQ8g6f15MCjaoI-tc_1Gr8/ HTT	P/1.1
134.	8750	52192	.168	8.13	1.99		192	.16	8.1	31.	.129	9	HTTP		293	POST	//b)	XUZG2IZBqANwwzCWEqQ8g6f15MCjaoI-tc_1Gr8/ HTT	P/1.1
135.	87352	20192	.168	3.13	1.99		192	.16	8.1	31.	.129	9	HTTP		293	POST	//b)	XUZG2IZBQANwwzCWEqQ8g6f15MCjaoI-tc_1Gr8/ HTT	P/1.1
136	9877	197	168	1.13	1.99		197	16	8.1	31.	. 170	9	нттр		293	POST	//h) ///	XUZG2TZB0ANwwZCWE00806f15MC1aoT-tc_1Gr8/ HTT	P/1.1
00 0	c 29	74 9	C 34	00	0c	29	94	82	d4	08	00	45	00)t.	4	2	.E.		
83	1 04	85 1	f 90	07	42	45	if	c7	2d	90	17	50	18			E	P		
fa (04 27	15 0	0 00	50	41	53	54	20	2f	2f	62	58	55		.PO	ST /	/bxu		
5a	7 32	49 5	a 47	1 71	41	40	77	77	7a	43	57	45	71	ZG217	8qA	NWWZI	WEq		
21	8 0/	30 5	0 50	25	40	43	ba sa	50	51	49	20	54	05	Qadet	15M	CJao.	-LC		
0a	5 73	65 7	2 20	1 41	67	65	6e	74	3a	20	4d	61	7.8	.User	-40	ent:	Moz		
69 (Sc 6c	61 2	f 34	2e	30	20	28	63	6f	Gd	70	61	74	111a/	4.0	(cor	npat		
69 (52 6C	65 3	b 20) 4d	53	49	45	20	36	Ze	31	3b	20	Ible;	MS	IE 6	1;		
27 1	59 6e	04 0	5 77	13	20	40	54	29	00	0a	48	6T	73	windo	WS.	NT)	HOS		
12	10 23	38 3	0 35	20	04	03	20	68	54	22	51	60	24	20-80	180	00.1	ont		
20	IC 65	58 6	7 74	68	3a	20	34	0d	0a	43	6f	6e	60	-Lend	ith:	4	tonn		
65 (53 74	69 6	f Ge	3a	20	4b	65	65	70	2d	41	60	69	ectio	in:	кеер	ATI		
76	5 0d	0a 4	3 61	63	68	65	2d	43	6f.	6e	74	72	6f	ve0	ach	e-Col	TLLO		
DC	a zo	be t	T 20	1 63	01	05	DB	22	90	Ca	20	12	01	1: 10	D-ca	che.	Pra		
03	10 01	24 2	0.06	01	20	05	or	03	08	03	00	Ud	ua	(special)	00-	CHCIN			
1996			A											ALC: NO					

Internal II

Big issue: Lateral movement and other postinfection activities

- Internal scanning / enumeration
- Access to internal applications
- bruteforce attempts
- legitimate access with stolen credentials
- → Mostly depending on log files from internal sources

Baselining / Anomaly detection

Knowing your application behavior / network flows is critical to spotting malicious events

- Might be easy for default applications

 \rightarrow Statistics: Conversation e.g.

- How about special applications?

Demo #4: Baselining sample

Especially difficult if application payload types unknown or difficult to baseline

tshark -r Trace1.pcap -Y udp -Tfields -e data | more 4b417947534b6753414142746157357062474674596d3841524739 e1650518e41793d5abb03d 755d021f5cf975c6342cc14f84caf5e0b863 e1680231b0aee0ecbb648c0a4b14167412cbfb16356e8b6b76db 755f02cf93f622f368d2fef70bf71c5e5f85a8e297eb79795ac04f

Legitimate example Skype

Malicious example Peacomm.C malware

tshark -r Trace2.pcap -Y udp -Tfields -e data | more
10a6b286d9736aae21afc2ddf005f6125f66633de613a63e46
10a6b286d9736aae21afc2ddf005f6125f66633de613a63e46
10a7
10a0b286d9736aae21afc2ddf005f6125f66633de613a63e46
10b15a78
10bf281d1581812c38ee0e0d90c18f2e5458bbc25bc030b0
10a1530e1598ba7ad499afea4ca126827f07de483537d0ad14c0be

Baselining approaches e.g. Web

Many approaches for finding unknown sources of malicious activity

Sample: domain lists -> diff approach

- Cat I : Clean or already infected
- Cat II : newly infected
 Timely Diff's -> approach new infections / applications

How Wireshark can help

- Better understanding of your application behavior
- Scripted generation of baselining data
- Long-term comparison of network traces for detecting abnormal changes
- Incident Analysis Results can lead to good rules for IDS/IPS and other appliances

Demo #5-7: How Wireshark can help

- Better understanding of your application behavior
- Scripted generation of baselining data
- Long-term comparison of network traces for detecting abnormal changes
- Incident Analysis Results can lead to good rules for IDS/IPS and other appliances

Demo #5: How Wireshark can help

DNS answers for localhost IP can lead to inactive c2c system Beware: Also used for lots of valid reasons e.g. SPAM checking

148 <malicious5>.doomdns.com

Demo #6-7 How Wireshark can help

<presentation only - sorry>

Monitoring Networks - Proactive

- Use NetFlow/OpenFlow to monitor meta data

Set up alerts for unusual patterns

- Use IDS/IPS with optimized signatures

Reduce false positives as much as possible

 Set up Passive DNS / Passive SSL recording servers
 Helps in tracking down name resolution and certificate history

Monitoring Networks - Reactive

- Forensic analysis on full packet captures Has to be recorded before something happened, of course Carefully selected locations, e.g. Internet outbreaks

- Use NetFlow/OpenFlow for meta data Long term storage for forensic searches, e.g. "where did the attacker connect to from the infected system?"

- Use IDS/IPS as custom IoC alarm system Write custom IDS rules for known Indicators of Compromise from Wireshark Analysis results

Detecting malicious traffic

- Forget "silver bullets" there is no "showmethebadstuff" Wireshark filter
- Attackers hide in plain sight

DNS, HTTP(S), FTP,...

- Filter out positives

E.g. Alexa 1 Million Known update sites: OS, AV, Vendors

Final Words

- Network defense is a 24/7 challenge
- Attackers only need to succeed once, defenders would need 100% success

Read as: it's not "if" but "when" an attack will succeed.

Expect successful attacks on your network.

- Keep searching

It's a continuous task Don't just wait for some alarm to go off

!! Thank you for attending !!

Questions?

eMail: landi@packet-foo.com
Web: www.packet-foo.com
Twitter: @0x6C616E6469