SharkFest'17 US

Understanding Throughput & TCP Windows

A Walk-Through of the Factors that can limit TCP Throughput Performance

Kary RogersDirector, Staff Engineering | Riverbed Technology

Agenda

- TCP ownership
- Level set terms
- Receiver side factors
- Sender side factors
- Other factors
- Checklist

Why Do We Care About TCP?

What is Bandwidth?

bandwidth

noun | band·width | \'band-width, -witth\

Definition of BANDWIDTH for English Language Learners

: a measurement of the ability of an electronic communications device or system (such as a computer network) to send and receive information

What is Throughput?

throughput

Definition of THROUGHPUT for English Language Learners

: the amount of material, data, etc., that enters and goes through something (such as a machine or system)

What is the Difference?

- Bandwidth is the total, raw capacity
- Throughput is what you're actually getting
- We will focus on throughput of a single connection

What is BDP?

The amount of data TCP should have within the transmission path at any one time in order to fully utilize the available capacity

i.e. golf balls in a PVC pipe

How Much Data Can We Send?

..... Unsent data

What are the Factors?

- Amount of data the receiver says it can receive
- Amount of data the sender thinks it can send

Receiver

- Receive window RWIN, RWND, SO_RCVBUF
- Amount of free space in the receiver's socket buffer
- The application reads data from the buffer to free space
- Advertised in every packet in the TCP header

Receiver

- 16 bit integer 64k max
- Window scaling allows up to 1G RFC 1323
- Must be supported by both hosts

How Much Data Can We Send?

MIN (RWIN, BDP)

- Bytes in flight
- Congestion window CWND
- Send buffer

Sender – Bytes in Flight

- Sender side of RWIN
- Amount of data that has been sent on the wire but not yet acknowleged i.e. in flight

Sender – Bytes in flight

Sender – Bytes in Flight

- Sender side flow control based on network conditions and capacity
- A state variable not in the TCP header
- Referred to in multiples of MSS
- Starts small 2, 4, 10
- Increases exponentially during slow start
- Increases linearly after slow start (cwnd > ssthresh)
- Increases until RWIN or packet loss

- Sender is bound by CWND even if RWIN is large
- Growth of CWND in recovery depends on algorithm
 - Windows client uses New Reno
 - Windows server uses DCTCP or CTCP
 - Linux uses CUBIC
- CWND visibility
 - TCP Analyzer tool on Windows
 - ss tool on Linux

How Much Data Can We Send?

MIN (CWND, RWIN, BDP)

Sender – Send Buffer

- Size of socket buffer application is writing to
- OS default or set by application
- Optimal size depends on BDP
- Send buffer limit determines how much data is kept outstanding in TCP for one blocking or non-blocking send request
- More info on <u>MSDN</u> in the Remarks sections

Sender – Send Buffer

How Much Data Can We Send?

MIN (SNDBUF, CWND, RWIN, BDP)

Sender – Send Buffer

Throughput Checklist

- What is the BDP? Bandwidth x Latency
- What is the advertised window of the receiver?
- Are bytes in flight (cwnd) increasing and reaching BDP or RWIN?
- No?
 - Does the sender stop and wait for ACKs after sending the same amount of data over and over? send buffer
 - Is there packet loss (retransmissions, dup ACKs) preventing cwnd from growing? congestion
- Yes? Great!

Throughput Checklist

- What are we missing?
- Delayed ACKs
- Nagle
- <u>Hansang's video</u>

Throughput Checklist

- What if there's no unacknowleged data but a delay?
- Application delay
- User interaction delay

Contact

- kary@packetbomb.com
- @packetbomb
- Packetbomb.com

