

Automating Cloud Infrastructure

for network traffic analysis

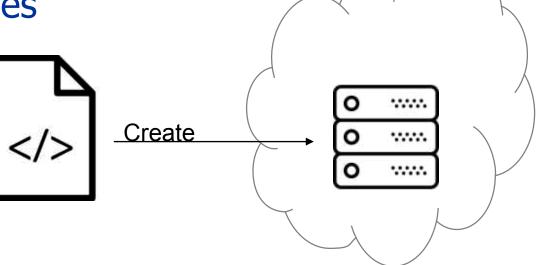
Brad Palm || Brian Greunke

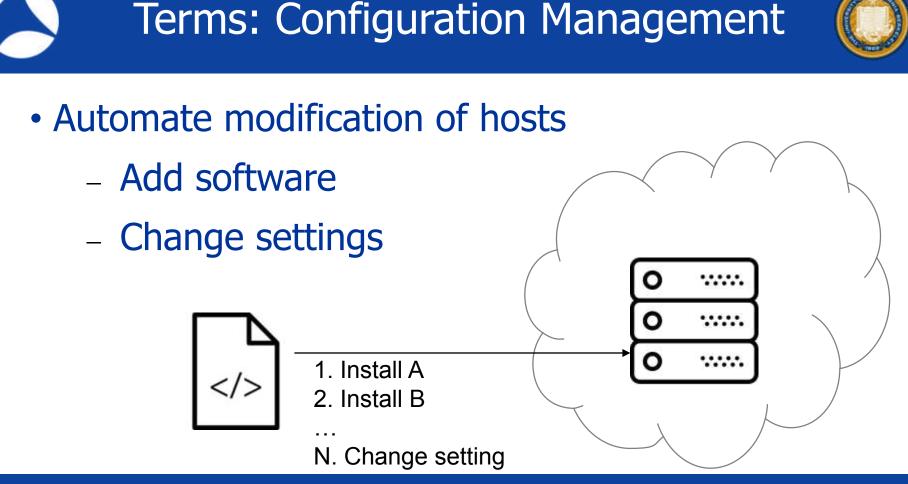
Outline

- High Level Process
- Terms and Definitions
- Data Movement and Storage
- Building Reusable Infrastructure
- Automating Processes
- Use Cases/Demo

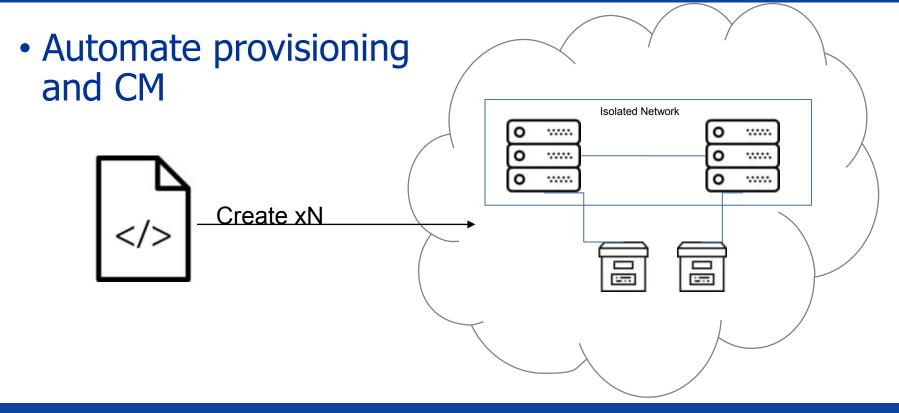
High Level Example

- Get data into cloud
- Pre-process using robust infrastructure and automated processes
- Analyze using robust infrastructure and manual processes




- Provision
- Configuration
- Orchestration

Terms: Provision

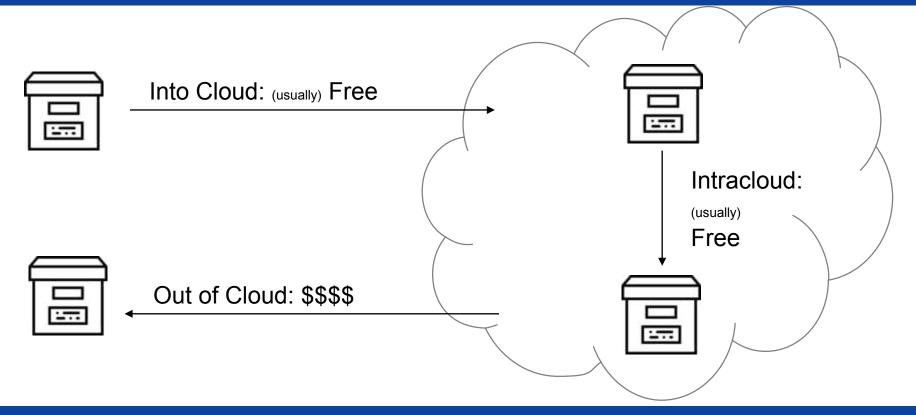

- Create new resources
 - Virtual machines
 - Networks
 - Storage

Terms: Orchestration

Azure Resource Manager

Use Cases

- Network Traffic Analysis
 - Repeatable, deterministic infrastructure
 - Scalable, on-demand infrastructure
 - Remotely accessible, collaborative infrastructure
- Toyota Lean model


Data transfer

- Considerations:
 - Cost / Direction of data flow
 - Time

Data: Transfer

Data Transfer Cost

Direction	Cost	Notes
In	\$0.00	* Snowball may incur fee
Between	\$4.00	Each time
Object > Block	\$0.00	* Intra-region
Out	\$18.00	Each time

* Assuming a 200GB file size for AWS

Data Transfer Time

- Considerations
 - Tool used
 - Location
 - Link quality

AWS Import/Export Snowball

* not recommended!!

Data Transfer Time

Time to transfer: **1 TB**

- T3: 2.7 days
- 100Mbps 1.2 days
- 1000Mbps 2.9 hours

Data Transfer Time

michael@Winblows-Surface:~\$ time aws s3 cp merged1.pcap s3://sharkfest2019/ Completed 422.5 MiB/3.8 GiB (3.6 MiB/s) with 1 file(s) remaining upload: ./merged1.pcap to s3://sharkfest2019/merged1.pcap

real18m10.729suser1m1.406ssys1m14.469s

Data Storage

- Object Storage
 - Cheap
 - Collaboration: Easy
- Block Storage
 - More \$
 - May be coupled to instance

Data Storage Cost

- Object (200Gb / month) (no transfer out)
 - AWS: \$4.50
 - Azure: \$3.70
- Block
 - AWS: \$8.60
 - Azure: \$10.00

Compute Costs

Instance	\$ / Hour	\$ / Day
2 vCPU 1 GiB RAM	\$0.00*	\$0.00*
2 vCPU 16 GiB RAM	\$0.14	\$3.36
16 vCPU 128 GiB RAM	\$1.12	\$26.88

Whiteboard Sesh

LIVE DRAWING OF VPC &

CLOUD CONCEPTS !

Building Example

Use Moloch for Indexing and Analysis

- Requires Moloch and separate instance(s) of Elastic search
- 1. Provision instance(s) of Elastic Search
- 2. Provision Moloch instance
- 3. Configure Elastic Search
- 4. Configure Moloch

#sf19us • UC Berkeley • June 8-13

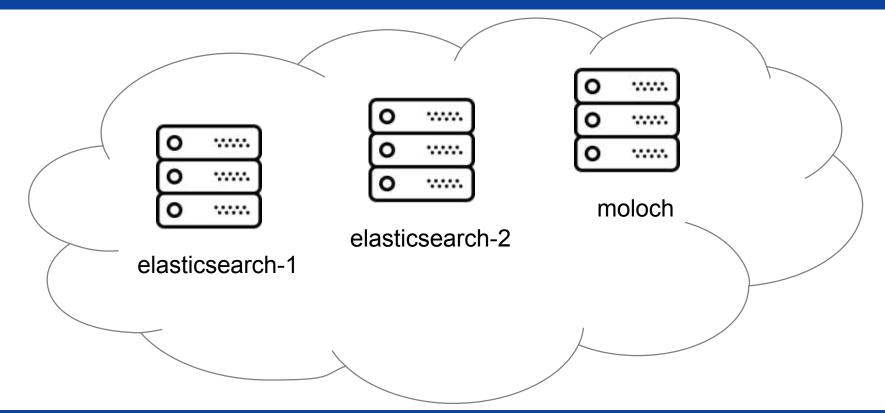
```
resource "aws instance" "elastic-search" {
 ami = "ami-b374d5a5"
 instance type = "r5.2xlarge"
 count = 2
resource "aws instance" "moloch" {
 ami = "ami-b374d5a5"
 instance type = "t2.medium"
 count = 1
```

Provision: Terraform

#sf19us • UC Berkeley • June 8-13

[user@host]\$ terraform plan

[user@host]\$ terraform apply


[user@host]\$ terraform destroy

Provision Results

Configure: Ansible

[user@host]\$ ansible-playbook -i hosts moloch.yml

Configure: Ansible

moloch.yml

- hosts: elasticsearch roles:
 - { role: elasticsearch }
- hosts: moloch roles:
 - { role: moloch }

Configure: Ansible

roles/elasticsearch/tasks.yml

 name: Amazon Linux - Install Elasticsearch become: yes

yum:

name: 'elasticsearch'

state: present

update_cache: yes

allow_downgrade: 'yes'

when: es_use_repository

notify: restart elasticsearch

 name: Amazon Linux - Install Elasticsearch become: yes yum: name: 'elasticsearch' state: present update_cache: yes allow_downgrade: 'yes' when: es_use_repository notify: restart elasticsearch

More Examples

- Carve large PCAP using tcpdump/tshark
- Analyze large PCAP using Wireshark on a heavy-duty instance
- Parallel process multiple captures using multiple cloud instances
- Build verifiable analysis tools

Parallel Processing

- 7 PCAPs (each day over a week)
- Same processing required for each prior to analysis
- Create 7 instances, pass PCAP to each, process independently, in parallel

Demo Example

- Use Case:
 - Large PCAP
 - Need to carve the PCAP
 - Needs to be done quickly

- Steps:
 - Move to S3 using "aws-cli" tool
 - Need to carve the PCAP
 - Needs to be done quickly

Carving a large pcap

- •~4 Gb
- > 3.6 Million Packets
- Encrypted HTTP captured on trunk port w/ VLAN tags
- A tale of two machines

#!/bin/bash

Create directory for individual streams
mkdir -p ./streams

Pull TCP stream numbers from pcap tshark -r large.pcap -T fields -e tcp.stream > streams.log

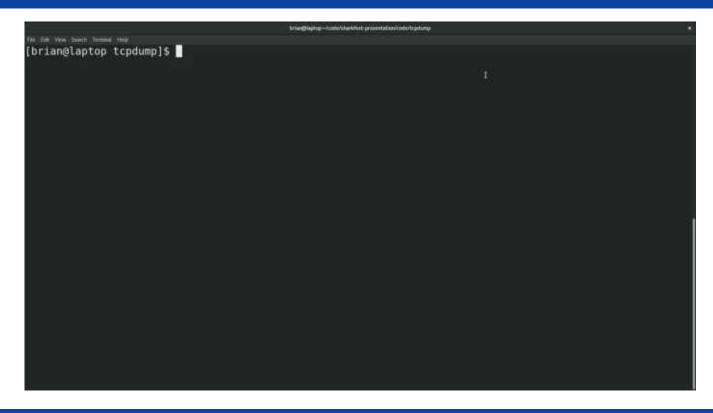
Sort and filter unique TCP stream numbers
cat streams.log | sort -n | uniq > sorted.log

Extract streams from pcap in parallel
parallel -a sorted.log 'tshark -r large.pcap -Y "tcp.stream == {}" -w ./streams/{}.pcap'

Attempt #1 Local Demo

- This ran for 8hrs
- Never finished the first part of the parsing script
- 2,367 streams were found of the 6.6M streams that were actually there
- Could not complete the job, given the tool!

What Do?



Provision Demo

*Video of provisioning the analysis machine within AWS

Attempt #2 Cloud Demo

- r5.24XL
- 96 vCPUs
- 768GB RAM

real 127m44.629s user 11143m34.317s sys 820m7.461s ubuntu@ip-172-31-31-118:/data\$ ls carve-streams.sh large.pcap sorted.log streams streams.log ubuntu@ip-172-31-31-118:/data\$ wc -l sorted.log 7429 sorted.log ubuntu@ip-172-31-31-118:/data\$ wc -l streams.log 6687273 streams.log

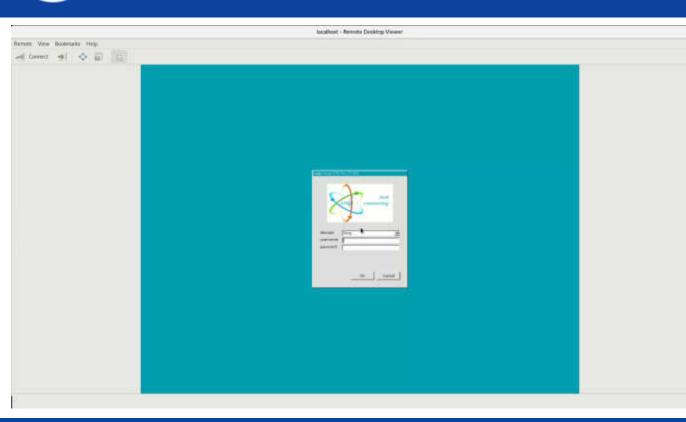
ubuntu@ip-172-31-31-118:/data\$ time ./carve-streams.sh

Task took ~2hrs

Demo 2 – Local FAIL

The Mondreck Second Analysis Science - Mondrecky - Mondreck - Social - Help	- 1a or	
4 ■ 3 ● 1 □ X 5 3 + + = = = 1 1 2 ■ 6 6 6 9 0 International States	🖽 -) bernint. 🔸	
		*Trying to have Wireshark oper the file on a
		laptop
0 7 using regulations and 0	Parison 462027 Distance 462027 (20.0%)	

Demo 2 Configure



*Video of configuring the cloud analysis machine with Wireshark

Demo 2 – Cloud WIN

*Video of remotely connecting to cloud resource and then successfully opening the large PCAP in Wireshark

Questions???

OpenOne Labs

in linkedin.com/in/bradpalm/

