
#sf19us • UC Berkeley • June 8-13

SharkFest’19 US

#sf19us • UC Berkeley • June 8-13

TLS1.3, DoH, DNS
over TLS, QUIC,
IPv6 PDM and
more …

Nalini Elkins
Inside Products, Inc.

www.insidethestack.com

#sf19us • UC Berkeley • June 8-13

Session Description
Many new protocols are being worked on at the IETF. Some are RFCs already.
Others will soon gain that status. These protocols include: TLS1.3, DNS over
HTTPs, DNS over TLS and QUIC. A fundamental premise that all of these
protocols share is that metadata may be misused. So, more and more of the
packet is being encrypted. How will this impact diagnostics and
troubleshooting? If many of the protocol headers themselves are encrypted,
how will we get performance information? One new RFC (RFC8250) for IPv6
Performance Diagnostics and Metrics tries to give us back some of the
information we need. This session will discuss these new protocols and show
packet flows for each.

#sf19us • UC Berkeley • June 8-13

About me?
• Product developer (including OEM by

IBM, Boole & Babbage)
• Author: RFC8250: IPv6 Performance

and Diagnostic Metrics (PDM) and
others

• Doing network design / diagnostics for
25+ years

• Member in good standing of TraceRoute
fan club (also WireShark!)

#sf19us • UC Berkeley • June 8-13

Agenda
• Background on “tussle”
• TLS1.3
• DoH
• DNS over TLS
• QUIC (gQuic)(HTTP/3)
• PDM
• Surprise bonus! (Simulated quantum network)

#sf19us • UC Berkeley • June 8-13

Why?

• Let’s start with something we know.

• TLS1.2

#sf19us • UC Berkeley • June 8-13

TLS1.2 to Google

#sf19us • UC Berkeley • June 8-13

Certificate in clear

#sf19us • UC Berkeley • June 8-13

Cert. Encrypted TLS1.2

#sf19us • UC Berkeley • June 8-13

Let’s Decrypt
Add SSLKEYLOGFILE

CLIENT_RANDOM
03d574c74b3c1a36d37637c6c2779e3e
bd785bb6b5eb76c4546cdfe7e35e2c4c
423e69b3cc63cd433f0dfe0b6df6a4c113
47e5bf3a0783a4e6727a0a26786a53a0
7541b2566c96242486d498b0bfc64c

#sf19us • UC Berkeley • June 8-13

TLS1.2 Decrypted

#sf19us • UC Berkeley • June 8-13

Decrypted Cert

Can see more
of certificate
now

#sf19us • UC Berkeley • June 8-13

Tussle

• Privacy of metadata
• Endpoints (applications) vs ISPs
• Enterprise diagnostics (packet decryption)

#sf19us • UC Berkeley • June 8-13

• Sample from
Gigamon
SSL
Decryption
feature

• Notice the
“RSA”

#sf19us • UC Berkeley • June 8-13

TLS1.3 to Google

#sf19us • UC Berkeley • June 8-13

Differences from TLS1.2

• Notice that handshake is different

• Much more encrypted

• Can only see Client Hello and Server Hello

#sf19us • UC Berkeley • June 8-13

SSLKEYLOGFILE
Used same environment variable in Linux to capture.

SERVER_HANDSHAKE_TRAFFIC_SECRET 49a63b08e0810d4abb2ee926c5a7ba4619c97d31a374f11e8a99b680c70336b8
e6bf7bd3f8f8ce2bb2f5b54989b519e0eb7e536e01164cbf542ea52d9b35fd01a873a68df8cf76b241f0c9f0759ac635

EXPORTER_SECRET 49a63b08e0810d4abb2ee926c5a7ba4619c97d31a374f11e8a99b680c70336b8
e05f874b55ea0c3bab17cf8cad3fc2f63245e577235318d1fb99686a40d29edfe5a657919f7f9e886bdb119a464ad8b7

SERVER_TRAFFIC_SECRET_0 49a63b08e0810d4abb2ee926c5a7ba4619c97d31a374f11e8a99b680c70336b8
949ccb80ec9e9be9559010c00fd895992d988d8a07e2ae29b1925dff6cdb0036490c554792a7992823ff2615abffb0e7

CLIENT_HANDSHAKE_TRAFFIC_SECRET 49a63b08e0810d4abb2ee926c5a7ba4619c97d31a374f11e8a99b680c70336b8
3a5da2e1eeeafa0785c351368d0eceebbe451b39b5036c1de72db34f43f1106f318b12ef665d5462a980cb6349b2183b

CLIENT_TRAFFIC_SECRET_0 49a63b08e0810d4abb2ee926c5a7ba4619c97d31a374f11e8a99b680c70336b8
3c6bcfc90dbcd965e62b8eeafaeb3fe9ec59047f98edd3b745f5dc89b9fe4ab8db73032e66d565137df8592cd8b03eb7

#sf19us • UC Berkeley • June 8-13

TLS1.3 Decrypted

#sf19us • UC Berkeley • June 8-13

Packet Data Decrypted

#sf19us • UC Berkeley • June 8-13

DoH Enterprise Issues
Conversation with Fortune 50 company architect telling him that browsers will
have pointer to DoH resolvers.

• You mean that DNS could be resolved outside my enterprise?
• So whoever that is that resolves my DNS sees the pattern and frequency

of what sites my company goes to?
• How do I change this?

#sf19us • UC Berkeley • June 8-13

DoH and House of Lords
https://www.theywork
foryou.com/lords/?id=
2019-05-14a.1492.3

#sf19us • UC Berkeley • June 8-13

DOH: How to do

• Curl –doh-url https://1.1.1.1
https://www.google.com

• (1.1.1.1 = cloudflare, can use any public DoH
server)

#sf19us • UC Berkeley • June 8-13

DoH to 1.1.1.1

Notice TLS1.3

Could this be DNS query?

#sf19us • UC Berkeley • June 8-13

Decrypted

Notice HTTP/2 used.

DoH packet

Port 443 used

#sf19us • UC Berkeley • June 8-13

DoH Packet Decrypted

DNS query to google.

#sf19us • UC Berkeley • June 8-13

DNS over TLS

• Dnsprivacy.org

• Being displaced by DoH? Probably.

#sf19us • UC Berkeley • June 8-13

QUIC

• Enable on
Windows
Chrome

• Lots of work
going on.

• Lots of bugs in
downloads!

#sf19us • UC Berkeley • June 8-13

What is it?

• New transport layer (equivalent to TCP and
UDP)

• New protocol to replace HTTP

• Originally from Google

The Internet hourglass

• 1998 version:
• IP on everything:

• Global addressing
• Maximize interoperability

Idea: Least common functionalities to maximize
the number of usable networks

email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

Ethernet PPP…

CSMA async sonet...

copper fiber radio...

S. Deering, Watch the Waist of the Protocol Hourglass. Keynote,
IEEE ICNP 1998 and IETF 51, London, August 2001From March 16, 2017, EDCO

QUIC Presentation: Simone Ferlin

The Internet hourglass

email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

Ethernet PPP…

CSMA async sonet...

copper fiber radio...

S. Deering, Watch the Waist of the Protocol Hourglass. Keynote,
IEEE ICNP 1998 and IETF 51, London, August 2001

email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP4 IP6

ethernet PPP…

CSMA async sonet...

copper fiber radio...

• 1998 version:
• IP on everything:

• Global addressing
• Maximise interoperability

It took over 20 years to deploy IPv6
• Lots of innovation in the application layers

• The Internet grew a lot between these years...
• But only TCP or UDP as transport

• SCTP (RFC2960, 4960, ...), DCCP (RFC4340) – or
anything that is different did not get enough traction

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

The Internet hourglass

2017 version:
• Still all over IP, but IPv4 and IPv6

• TCP is drowning out UDP
• HTTP and TLS (HTTPS) are part of the transport

• More than 50% of the Internet’s traffic is already HTTPS

B. Trammell and J. Hildebrand, “Evolving Transport in the Internet”,
IEEE Internet Computing, vol. 18, no. 5, pp. 60-64, Sept.-Oct. 2014.

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

Why?

Innovation is difficult in some places:

B. Trammell and J. Hildebrand, “Evolving Transport in the Internet”,
IEEE Internet Computing, vol. 18, no. 5, pp. 60-64, Sept.-Oct. 2014.

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

Why?

Innovation is difficult in some places:
• Transport:

• Application developers resort to known, wide
deployed protocols

• OS (kernel) developers only implement a new
protocol, if it gives benefits requested by (many)
others.

B. Trammell and J. Hildebrand, “Evolving Transport in the Internet”,
IEEE Internet Computing, vol. 18, no. 5, pp. 60-64, Sept.-Oct. 2014.

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

Why?

Innovation is difficult in some places:
• Transport:

• Application developers resort to known, wide
deployed protocols

• OS (kernel) developers only implement a new
protocol, if it gives benefits requested by (many)
others.

• Network:
• The Internet is already too large and involves too

many stakeholders on this layer (different goals,
budget, etc.)

B. Trammell and J. Hildebrand, “Evolving Transport in the Internet”,
IEEE Internet Computing, vol. 18, no. 5, pp. 60-64, Sept.-Oct. 2014.

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

What happened?

• Transport:
• TCP evolves very slow.

• MPTCP’s, an extension of TCP for multiple paths RFC6824,
largest work is dedicated to engineering - not innovation.

• Network:
• Made assumptions about TCP (and other traffic) and

baking these inside TCP accelerators, FWs, NAT, etc.
• Middlebox boom with IPv4 address exhaustion

• The web happened (through these years of fights for changes)
• Amplified dominance with mobile web and cloud

• Almost all content is HTTP(S) based

L. Eggert, “QUIC – A New Internet Transport. Guest Talk
December, 14th, 2017, RWTH Aachen, Germany.

Slow
transport
evolution

Middlebox
boom, zoo

Rise of
the web

Internet
ossification

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

What happened?

• Transport:
• TCP evolves very slow.

• MPTCP’s, an extension of TCP for multiple paths RFC6824,
largest work is dedicated to engineering - not innovation.

• Network:
• Made assumptions about TCP (and other traffic) and

baking these inside TCP accelerators, FWs, NAT, etc.
• Middlebox boom with IPv4 address exhaustion

• The web happened (through these years of fights for changes)
• Amplified dominance with mobile web and cloud

• Almost all content is HTTP(S) based

L. Eggert, “QUIC – A New Internet Transport. Guest Talk
December, 14th, 2017, RWTH Aachen, Germany.

Slow
transport
evolution

Middlebox
boom, zoo

Rise of
the web

Internet
ossification

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

What happened?

• Transport:
• TCP evolves very slow.

• MPTCP’s, an extension of TCP for multiple paths RFC6824,
largest work is dedicated to engineering - not innovation.

• Network:
• Made assumptions about TCP (and other traffic) and

baking these inside TCP accelerators, FWs, NAT, etc.
• Middlebox boom with IPv4 address exhaustion

• The web happened (through these years of fights for changes)
• Amplified dominance with mobile web and cloud

• Almost all content is HTTP(S) based

L. Eggert, “QUIC – A New Internet Transport. Guest Talk
December, 14th, 2017, RWTH Aachen, Germany.

Slow
transport
evolution

Middlebox
boom, zoo

Rise of
the web

Internet
ossification

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

Examples of ossification

Original:

snd/rcv from/to anywhere anytime

Many protocols on top of only IP

E2E addressing

IP options to signal

Network is stateless

Data has meaning to applications only

Now:

Enforced directionality (middleboxes, FWs)

Packets dropped unless TCP or UDP

Network (NATs) rewrites options, e.g. ports

Options not used or dropped, no wide support

Network tracks entire connections, e.g. IDS/IPS

Network rewrite and insert data

L. Eggert, “QUIC – A New Internet Transport. Guest Talk
December, 14th, 2017, RWTH Aachen, Germany.

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

Transport Protocols are not aging well

TCP
• New TCP must look like old TCP

• Multipath TCP was an engineering challenge
• TCP semantics is already complicated

• New TCP must look like old TCP
• TCP headers are not encrypted or even authenticated

• “TCP accelerators”
• TCP options space is limited and crowded

• TCP header 20B without options, max. of 60B with options, i.e. 40B for option space:
window scale (3), timestamp (10), MSS (4), SACK (2) MPTCP needs 12B

• Slow upgrade cycles
• Old machines with old kernels (high-risk, invasive)

From March 16, 2017, EDCO
QUIC Presentation: Simone Ferlin

#sf19us • UC Berkeley • June 8-13

End-to-end Principle

"Some of us who have been in the IETF for a long
time find that having smart endpoints and a dumb
network is the best architecture. This is the end-
to-end principle."

#sf19us • UC Berkeley • June 8-13

Unsustainable

• Others believe that the end-to-end principle
leads to an unsustainable trajectory to ever
more complex endpoints and network
functions.

• Middleboxes serve useful functions (load
balancers, firewalls, NAT, etc)

#sf19us • UC Berkeley • June 8-13

EMAIL to QUIC WG
• However, in those discussions, a related concern was identified; confusion between QUIC-the-transport-

protocol, and QUIC-the-HTTP-binding. I and others have seen a number of folks not closely involved in
this work conflating the two, even though they're now separate things.

• To address this, I'd like to suggest that -- after coordination with the HTTP WG -- we rename our
the[sic] HTTP document to "HTTP/3", and using the final ALPN token "h3". Doing so clearly identifies it
as another binding of HTTP semantics to the wire protocol -- just as HTTP/2 did -- so people understand
its separation from QUIC.

• Oct. 18, 2018: Mark Nottingham: co-chair QUIC WG

#sf19us • UC Berkeley • June 8-13

GQUIC Traces

#sf19us • UC Berkeley • June 8-13

GQUIC

#sf19us • UC Berkeley • June 8-13

Notice
• TLS1.3 and GQUIC packets interspersed

• GQUIC packets not decrypted

• TLS1.3 decrypted

• Same two endpoints

#sf19us • UC Berkeley • June 8-13

IPv6 PDM: RFC8250

• Standards track RFC
• IETF consensus document
• Implemented in FreeBSD

(proprietary)
• Why?
• Presentation from IETF

follows

#sf19us • UC Berkeley • June 8-13

Common IPv6 Extension Headers

Next Header
(Hex)

Next Header
(Decimal)

Header Name Description

0 0 Hop-by-Hop Options For all devices on the path

2B 43 Routing 0 – Source Routing (deprecated) 2 –
Mobile IPv6

2C 44 Fragment Only when packet is fragmented

32 50 Encapsulated Security
Payload (ESP)

IPSec encrypted data

33 51 Authentication Header (AH) IPSec authentication

3C 60 Destination Options http://www.iana.org/assignments/ipv6-
parameters/ipv6-parameters.xml (Mobile
IP, etc)

#sf19us • UC Berkeley • June 8-13

IPv6 Destination Options

• Destination
Options: for end
host

Source

Destination

IPID FIELD IN IPv4 - BACKGROUND

 IPID: Internet Protocol Identification. Provides a unique
identifying number for a given IP Packet within a flow.

 Sometimes called Datagram number.
 USAGE/VALUE
 Enable Fragmentation.
 Packet sequencing at end points (Edge Networks).
 Diagnostics! Logically associate packets across complex

network situations.
 IPID is frequently used in IPv4 troubleshooting for the

purposes of “watermarking” the packets to correlate them in
different troubleshooting scenarios. The implementations are
such that the IPID is infrequently changed by middle boxes
even if the content is.

48

IPID FIELD IN IPv6 – CURRENT STATE

• IMPLEMENTED IN FRAGMENT HEADER
EXTENSION (TYPE 44).

LOCATION:
32 bit field at offset 4 in FHE.

 ISSUES:
Only used if fragmentation required!

 IPID not always available to facilitate
network diagnostics!

49

Why We Need It

• Provides recognition of sequencing and duplication of packets

– TCP SEQ / ACK (retransmissions, duplication: true and false)

– UDP – no sequence number

– ICMP – need to see sequence number in embedded packet

– Across multiple trace points

– It’s not going to get any easier.

50

#sf19us • UC Berkeley • June 8-13

Added Response Time

• As we progressed, we could see that end-to-
end response time as well as breakout of server
and network time was missing!

• Also, if we add that, we could get support from
IP Performance Metrics (IPPM) Working Group
at the IETF

IPPM Considerations for the IPv6 PDM
Destination Option

Nalini Elkins – Inside Products, Inc.
IETF91

Requirement

• In basic IP
transport

• Undisturbed
by middle
systems

Solution

•Implementation of
existing extension
header: Destination
Options Header
(DOH)
•Performance and
Diagnostic Metrics
(PDM) DOH

We propose:

PDM

• Performance and Diagnostic Metrics Destination Option (PDM)
contains the following fields: (by 5-tuple)

• PSNTP : Packet Sequence Number This Packet
• PSNLR : Packet Sequence Number Last Received
• DELTALR : Delta Last Received
• DELTALS : Delta Last Sent
• TIMEBASE : Base timer unit
• SCALEDL : Scale for Delta Last Received
• SCALEDS : Scale for Delta Last Sent

PDM Timing

• No time synchronization needed

• All times are in relation to self

Start Flow

• Packet 1 is sent from Host A to Host B.
The time for Host A is 10:00AM.

• The time and packet sequence number
are saved by Host A internally. The
packet sequence number and delta times
are sent in the packet.

Packet 1
Packet 1

PDM Contents:

PSNTP : Packet Sequence Number This Packet: 25
PSNLR : Packet Sequence Number Last Received: -
DELTALR : Delta Last Received: -
DELTALS : Delta Last Sent: -

Host
A

Host B

Keep in Host A

• Internally, within the sender, Host A, it must
keep:

• Packet Seq. Number of last packet sent: 25
• Time the last packet was sent: 10:00:00

Keep in Host B

• Packet 1 is received at Host B. Its time is set to
one hour later than Host A. In this case, 11:00AM

• Internally, within the receiver, Host B, it must note:

• Packet Seq. Number of last packet received: 25
• Time the last packet was received : 11:00:03

Server Delay

• Host B processes packet 1 and creates a
response (packet 2).

• Packet 2 is sent by Host B to Host A.

• This is the time taken by Host B or Server Delay

• Server Delay = Sending time (packet 2) - receive
time (packet 1)

DeltaLR

• We will call the result of this calculation: Delta
Last Received

• DELTALR = Sending time (packet 2) - receive
time (packet 1)

• Note, both sending time and receive time are
saved internally in Host B. They do not travel in
the packet. Only the Delta is in the packet.

Host B Stats

• Within Host B is the following:

• Packet Sequence Number of the last packet received: 25
• Time the last packet was received: 11:00:03
• Packet Sequence Number of this packet: 12
• Time this packet is being sent: 11:00:07

• DELTALR = 4 seconds (11:00:07 - 11:00:03)
• DELTALR is Server Delay.

Packet 2

Packet 2

PDM Contents:

PSNTP : Packet Sequence Number This Packet: 12
PSNLR : Packet Sequence Number Last Received: 25
DELTALR : Delta Last Received: 4 seconds
DELTALS : Delta Last Sent: -

Host
A

Host B

Metrics Needed

• The metrics left to be calculated are end-
to-end time and round-trip delay (network
time).

• This will be calculated by Host A when it
receives Packet 2.

Packet 2 Received

• Packet 2 is received at Host A. Remember, its time is set to
one hour earlier than Host B. Internally, it must note:

• Packet Sequence Number of the last packet received: 12
• Time the last packet was received : 10:00:12

• Note, this timestamp is in Host A time. It has nothing
whatsoever to do with Host B time.

End-to-End Time
• Now, Host A can calculate total end-to-end time.
• End-to-End Time = Time Last Received - Time Last Sent
• Packet 1 was sent by Host A at 10:00:00. Packet 2 was received

by Host A at 10:00:12
• End-to-End time = 10:00:12 - 10:00:00 or 12

• This metric we will call DELTALS or Delta Last Sent

Network TIme

• We can now also calculate round trip delay
(network time). The formula is:

• Round trip delay = DELTALS - DELTALR

• Or: End-to-end time – Server Delay

• Round trip delay = 12 - 4 or 8

How to Communicate?

• Now, the only problem is that at this point
all metrics are in Host A only and not
exposed in a packet.

• To do that, we need a third packet.

Packet 3
Packet 3

PDM Contents:

PSNTP : Packet Sequence Number This Packet: 26
PSNLR : Packet Sequence Number Last Received: 12
DELTALR : Delta Last Received: 0
DELTALS : Delta Last Sent: 12 seconds

Host
A

Host B

Questions from IETF91
(Answered in IETF 92: See Appendix)

1. Does PDM have enough variables to actually diagnose
problems?

2. Are all PDM fields necessary?
3. Why is the proposal for an IPv6 extension header rather

than a TCP option? Only TCP is important.
4. Does PDM create too much overhead?
5. Will PDM work for complex apps not just simple

applications with one send and one receive?

#sf19us • UC Berkeley • June 8-13

Ping to Loopback (::1)

#sf19us • UC Berkeley • June 8-13

Destination Options: IANA

https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml#ipv6-parameters-2

#sf19us • UC Berkeley • June 8-13

PDM Destination Option

#sf19us • UC Berkeley • June 8-13

Performance and Diagnostic Metrics Destination Option (PDM)
contains the following fields: (by 5-tuple)

• PSNTP : Packet Sequence Number This Packet
• PSNLR : Packet Sequence Number Last Received
• DELTALR : Delta Last Received
• DELTALS : Delta Last Sent
• SCALEDL : Scale for Delta Last Received
• SCALEDS : Scale for Delta Last Sent

PDM Layout

#sf19us • UC Berkeley • June 8-13

FTP to Loopback

#sf19us • UC Berkeley • June 8-13

The Other Way

#sf19us • UC Berkeley • June 8-13

SSH to PDM Enabled Server

#sf19us • UC Berkeley • June 8-13

The Other Way: Port 39535

#sf19us • UC Berkeley • June 8-13

More Information in PDM

TCP SYN Packet

All fields initialized to zero.
Initial PSN set.

#sf19us • UC Berkeley • June 8-13

In Next Packet

What is that Delta time?

Time difference
from when packet
3628 was received
to when packet
61425 is sent.

Application
processing time

TCP SYN-
ACK Packet

#sf19us • UC Berkeley • June 8-13

Add PSN Last Received Column

Can see
that
packets
3629 and
3630 both
received

#sf19us • UC Berkeley • June 8-13

IPv6 Extension Headers Dropped

• Controversy at
IETF

• Can IPv6 extension
headers be used
reliably & to what
extent?

#sf19us • UC Berkeley • June 8-13

From RFC7282
NOTE: As an example, we
note that the cell describing
the support of IPv6 packets
with DO8 for web servers
(containing the value
"11.88% (17.60%/20.80%)")
should be read as: "when
sending IPv6 packets with
DO8 to public web servers,
11.88% of such packets get
dropped. Among those
packets that get dropped,
17.60%/20.80% (best case /
worst case) of them get
dropped at an AS other than
the destination AS".

Destination Options Header

#sf19us • UC Berkeley • June 8-13

PDM Next Steps

• Currently installed
on two Vultr virtual
servers

• Expand to multiple
• Write new study
• Co-authors?
• Within enterprise

study?
• Please contact me

#sf19us • UC Berkeley • June 8-13

Now, the future …

• Quantum networks!

• What the heck?

• Quantum Internet Research Group (QIRG) at
IRTF
https://datatracker.ietf.org/rg/qirg/documents/

#sf19us • UC Berkeley • June 8-13

https://datatracker.ietf.org/doc/slides-104-qirg-sessa-
tutorial-on-quantum-repeaters/00/

#sf19us • UC Berkeley • June 8-13

Quantum Computing

• Quantum computers have a leg up over
traditional computers when it comes to
factoring.

• A classical computer uses bits of
information, 1s and 0s. A quantum
computer uses what are called qubits,
which can be a mix of both 1 and 0
simultaneously and which exist in a delicate
quantum state called superposition. http://physicsworld.com/cws/article/news/2016/

mar/04/shors-algorithm-is-implemented-using-
five-trapped-ions

http://spectrum.ieee.org/tech-talk/computing/hardware/encryptionbusting-quantum-computer-practices-factoring-in-scalable-fiveatom-experiment

#sf19us • UC Berkeley • June 8-13

Shor’s Algorithm
• Peter Shor, an MIT math professor, came

up with an algorithm to factor large
numbers with a quantum computer in
1994 but had no way to test it.

• In 2001,Isaac Chuang, an MIT physicist
and electrical engineer, managed to
use this algorithm to factor the number
15, but the quantum system he used
could not be scaled up to factor anything
more complicated.

http://spectrum.ieee.org/tech-talk/computing/hardware/encryptionbusting-quantum-computer-practices-factoring-in-scalable-fiveatom-experiment

#sf19us • UC Berkeley • June 8-13

Factoring Prime Numbers

• A prime number (or a prime) has exactly two distinct divisors: 1 and itself.
• The smallest twenty-five prime numbers (all the prime numbers under 100) are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,89, 97

• Prime number factorization is a list of all the prime-number factors of a given number.

• The prime factorization does not include 1, but does include every copy of every prime factor.
For instance, the prime factorization of 8 is 2×2×2, not just "2". Yes, 2 is the only factor, but
you need three copies of it to multiply back to 8, so the prime factorization includes all three
copies

#sf19us • UC Berkeley • June 8-13

So what?

RSA which is one of the cryptographic
algorithms we use today relies on the
difficulty of prime number factorization

https://datatrac
ker.ietf.org/doc
/slides-104-
qirg-sessa-
tutorial-on-
quantum-
repeaters/00/

https://datatracker.ietf.org/doc/slides-104-qirg-sessa-tutorial-on-
quantum-repeaters/00/

https://datatracker.ietf.org/doc/slides-104-qirg-sessa-tutorial-on-
quantum-repeaters/00/

https://datatracker.ietf.org/doc/slides-104-qirg-sessa-tutorial-on-
quantum-repeaters/00/

#sf19us • UC Berkeley • June 8-13

SimulaQron

#sf19us • UC Berkeley • June 8-13

Trace

#sf19us • UC Berkeley • June 8-13

Packet with Payload

#sf19us • UC Berkeley • June 8-13

Manual Breakout
original Data portion: 020100000000000c0000070500001f537f000001
Breakout
02 : version unsigned integer (uint8_t) 1 byte Current version is 2
01 : type unsigned integer (uint8_t) 1 byte Message type : CQC_TP_COMMAND
0000 : app_id unsigned integer (uint16_t) 2 bytes Application ID,
0000000c : length unsigned integer (uint32_t) 4 bytes Total length of the CQC packet

CQC header
0000 : qubit_id unsigned int (uint16_t)2 bytes Qubit ID to perform the operation on
07 : instr unsigned int (uint8_t) 1 byte Instruction to perform : CQC_CMD_EPR
05 : options unsigned int (uint8_t) 1 byte Options when executing the command

#sf19us • UC Berkeley • June 8-13

Looks fine so far…

• Lots of fields that don’t make sense (not
documented?)

• Working with Simulaqron people

#sf19us • UC Berkeley • June 8-13

Quantum Net Background

• https://www.youtube.com/watch?v=9nfaYAU92
tY&feature=youtu.be

#sf19us • UC Berkeley • June 8-13

Contact Us!
• Nalini.Elkins@insidethestack.com

• Need to do
• HTTP3 (prob. Sept. timeframe)
• Quantum network dissector
• PDM hackathon / draft / testing

• www.industrynetcouncil.org to join
• Non-profit
• Free (happy to take donations!)
• May charge for labs (can put in sweat equity)

#sf19us • UC Berkeley • June 8-13

Appendix

• Additional PDM information

• Questions / answers from IETF92

Questions from IETF91
(Answered in IETF 92: See Appendix)

1. Does PDM have enough variables to actually diagnose
problems?

2. Are all PDM fields necessary?
3. Why is the proposal for an IPv6 extension header rather

than a TCP option? Only TCP is important.
4. Does PDM create too much overhead?
5. Will PDM work for complex apps not just simple

applications with one send and one receive?

Why IPv6 Extension Header?
• Question:

– Why is the proposal for an IPv6 extension header rather than a
TCP option? Only TCP is important.

• Answer:
– Large enterprises have traffic which is non-TCP which will

benefit from PDM.
– Non-TCP traffic includes:

• IBM's Enterprise Extender, which allows its SNA Peer-to-Peer Networking
(APPN) traffic flow over UDP links

• Some WWW traffic flows as UDP packets
• TFTP, SNMP, DNS, OSPF, etc.
• Other/new upper layer protocols (e.g. the new Frame Control Protocol)

– TCP applications will also benefit from PDM.

From Boeing

• Aircraft have many links with
varying cost, performance,
availability profiles.

• Not all links available during
all phases of flight.

• Not all links encode geo
information at the link-- layer

• Wide variety of applications
– not all of which are geo--
aware

• IPv6 layer is only
commonality

From IETF 91: IPv6GEO – GEO Information in IPv6 Packet Headers
http://www.ietf.org/proceedings/91/slides/slides-91-6man-8.pdf

Only for Simple Apps?

• Question
– Will PDM work for complex apps not just simple applications

with one send and one receive.

• Answer
– Not at all.
– Examples follow.

One-Way Flow
Packet Sender PSN PSN Delta Delta

This Packet Last Recvd Last Recvd Last Sent
===
1 Server 1 0 0 0
2 Server 2 0 0 5
3 Server 3 0 0 12
4 Server 4 0 0 20

In a one-way flow, only the Delta Last Sent
will be seen as used. Recall, Delta Last Sent
is the difference between the send of one
packet from a device and the next. This is a
measure of throughput for the sender -
according to the sender's point of view. That
is, it is a measure of how fast is the
application itself (with stack time included)
able to send packets.

How might this be useful? If one is having a
performance issue at the client and sees that
packet 2, for example, is sent after 5
microseconds from the server but takes much
longer to arrive at the destination (deduced
from other fields in the packet) then one may
safely conclude that there are delays in
the path other than at the server which may
be causing the delivery issue of that packet.
Such delays may include the network links,
middle-boxes, etc.

Multiple Send Flow
Assume that two packets are sent with each send from the server.

Packet Sender PSN PSN Delta Delta
This Packet Last Recvd Last Recvd Last

Sent
===
=
1 Server 1 0 0 0
2 Server 2 0 0 5
3 Client 1 1 20 0
4 Server 3 1 10 15
Notice that in packet 3, the client has a value
of Delta Last Received of 20. Recall that
Delta Last Received is the Send time of
packet 3 - receive time of packet 2. So, what
does one know now? In this case, Delta Last
Received is the processing time for the
Client to send the next packet.

How to interpret depends on what
is actually being sent. Remember,
PDM is not being used in isolation,
but to supplement the fields found
in other headers.

Examples
• Client is sending a standalone TCP ACK. One would find this by

looking at the payload length in the IPv6 header and the TCP
Acknowledgement field in the TCP header. So, in this case, the client is
taking 20 units to send back the ACK. This may or may not be
interesting.

• Client is sending data with the packet. Again, one would find this by
looking at the payload length in the IPv6 header and the TCP
Acknowledgement field in the TCP header. So, in this case, the client is
taking 20 units to send back data. This may represent "User Think
Time". Again, this may or may not be interesting, in isolation. But, if
there is a performance problem receiving data at the server, then taken
in conjunction with RTT or other packet timing information, this
information may be quite interesting.

Benefit of PDM

• Of course, one also needs to look at the PSN Last Received field
to make sure of the interpretation of this data. That is, to make
sure that the Delta Last Received corresponds to the packet of
interest.

• The benefits of PDM are that we have such information available
in a uniform manner for all applications and all protocols without
extensive changes required to applications.

Multiple Send with Errors
• Are the functions of PDM better suited to TCP or a TCP option? Let us

take the case of how PDM may help in a case of TCP retransmissions in
a way that TCP options or TCP ACK / SEQ would not.

• Assume that three packets are sent with each send from the server.

• From the server, this is what is seen:

Pkt Sender PSN PSN Delta Delta TCP
Data

This Pkt LastRecvd LastRecvd LastSent SEQ
Bytes
===

1 Server 1 0 0 0 123 100
2 Server 2 0 0 5 223 100
3 Server 3 0 0 5 333 100

At Client
• The client however, does not get all the packets. From the client, this is

what is seen for the packets sent from the server.

Pkt Sender PSN PSN Delta Delta TCP Data
This Pkt LastRecvd LastRecvd LastSent SEQ Bytes

===
1 Server 1 0 0 0 123 100
2 Server 3 0 0 5 333 100

• Notice that the packet with PSN = 2 from the server is not received

Server Retransmits
• Let's assume that the server now retransmits the packet. (Obviously, a

duplicate acknowledgment sequence for fast retransmit or a retransmit
timeout would occur. To illustrate the point, these packets are being left
out.)

• So, then if a TCP retransmission is done, then from the client, this is what
is seen for the packets sent from the server.

Pkt Sender PSN PSN Delta Delta TCP Data
This Pkt LastRecvd LastRecvd LastSent SEQ Bytes

===
1 Server 4 0 0 30 223 100

• The server has resent the old packet 2 with TCP sequence number of 223. The
retransmitted packet now has a PSN This Packet value of 4.

• The Delta Last Sent is 30. That is the time between sending the packet with PSN of 3 and
this current packet.

Server Retransmits AGAIN
• Let's say that packet 4 STILL does not make it. Then, after some

amount of time (RTO) then the packet with TCP sequence number of
223 is resent.

• From the client, this is what is seen for the packets sent from the server.

Pkt Sender PSN PSN Delta Delta TCP Data
This Pkt LastRecvd LastRecvd LastSent SEQ Bytes

===
1 Server 5 0 0 60 223

100

