
#sf20v • Online • October 12-16

SharkFest’20 Virtual

#sf20v • Online • October 12-16

TCP Selective Acknowledgement (SACK)

…correctly interpreting this field can help
you be a better performance
troubleshooter… John Pittle

Services CTO
Global Customer Success
Riverbed Technologies

john.pittle@riverbed.com

#sf20v • Online • October 12-16

My Agenda

• Call out relevant RFCs

• Review TCP ACK Basics

• SACK Introduction, Decode Details, Examples

• Wireshark columns, filters, and colorization

• Adventures from the Field - Visualization Replay

• Wrap-Up

#sf20v • Online • October 12-16

About me?

• Practicing Performance
Engineering since 1980

• Protocol Analysis since 1991
• Professional Services with

OPNET / Riverbed since 2005
• Love the mystery of a

complicated performance issue
• Shaved off beard in 2003…

#sf20v • Online • October 12-16

#sf20v • Online • October 12-16

Related RFCs

• RFC 793 – TCP (Original RFC – 1981)

• RFC 2018 – TCP Selective ACK Options (1996)

• RFC 2883 – An Extension to SACK … (2000)

#sf20v • Online • October 12-16

Review: TCP ACK Behavior

• As long as packets arrive in the expected order,
receiver will ACK every other packet (Default
Behavior)

• If a packet arrives out of order, the receiver will
immediately issue an ACK with a value equal to
the SEQ that was expected

#sf20v • Online • October 12-16

Review: TCP ACK Behavior

• Receiver will continue to ACK every packet until
the expected packet is received

• If sender receives 4 ACKs with the same ACK
number (aka Triple Duplicate ACK) he will
retransmit the missing segment
• Assumes TCP Fast Retransmit & Recovery (FRR) is available and

enabled

#sf20v • Online • October 12-16

! Heads Up !

Important term on the next slide

#sf20v • Online • October 12-16

Cumulative ACK (RFC 793)

The ACK in the TCP header is called the “Cumulative ACK”. The

value reflects stream bytes received in order up to the point when the

ACK packet was transmitted.

Receiver’s TCP declares that all bytes in the stream up to ACK-1 have

been received. The next byte of TCP stream expected by the receiver

should start with a SEQ equal to this ACK.

#sf20v • Online • October 12-16

Selective Acknowledgement

• RFC 2018 proposed an enhancement to the TCP
ACK mechanism

• Selectively acknowledge segments that have
arrived out of order
• The sender won’t have to retransmit those segments if
he knows they’ve been received

• But, this can’t be accomplished with Cumulative ACK
field alone, so a new field is needed

#sf20v • Online • October 12-16

Selective ACK – A TCP Enhancement

• New addition to the TCP Options field of the TCP
header

• Up to four (4) contiguous out of order
segments/segment ranges can be defined using
SACK
• Only three (3) if the TCP Timestamp option is also being
used

#sf20v • Online • October 12-16

Enabling SACK

• On by default in modern TCP Stacks

• SACK is negotiated at connection start-up

• Decode the TCP Options in SYN and SYN+ACK
and you’ll see “SACK Permitted”
• Meaning …”I will process the SACK field if you send it to me”

• Each side can independently chose

#sf20v • Online • October 12-16

Intended Benefits
• Better intelligence about the success of packet delivery
available to sender

• Goal is to minimize the amount of unnecessary
retransmissions

• Will not necessarily change Congestion Control algorithms

• Any retransmission may still have a negative effect on the
Congestion Window and related timers

#sf20v • Online • October 12-16

Use during packet analysis

• Interrogating the SACK fields will help you
quantify the extent of Out of Sequence packets

• Use “Bytes in Flight” as a guiding metric

• If in-flight data stays high no need to look any
further

• If in-flight data constantly dips or hits zero; or you
frequently see TCP slow-start, you may find the
root cause is severe out of sequence packets

#sf20v • Online • October 12-16

! Heads Up !

Three new terms on the next slide

#sf20v • Online • October 12-16

Wireshark is SACK Aware

• Wireshark can decode the SACK fields in the TCP
Options section of the TCP layer

• “SACK Count” and “Left Edge / Right Edge” values
can be displayed as columns in the decode summary
section

#sf20v • Online • October 12-16

Time for an Illustration…

#sf20v • Online • October 12-16

SACK Illustration #1

• Sender transmits a burst of 5 packets as follows:
• Pkt 1 SEQ=11 Len=10

• Pkt 2 SEQ=21 Len=10

• Pkt 3 SEQ=31 Len=10

• Pkt 4 SEQ=41 Len=10

• Pkt 5 SEQ=51 Len=10

#sf20v • Online • October 12-16

SACK Illustration #1

• Due to a network issue, the packets are received
in the following order:
• Pkt 1

• Pkt 2

• Pkt 4

• Pkt 5

• Pkt 3

#sf20v • Online • October 12-16

SACK Visualization #1

1st two packets arrive
11 - 30

#sf20v • Online • October 12-16

SACK Visualization #1

1st two packets arrive

Packet 4 arrives

11 - 30

11 - 30 41-50

Left Edge = 41

Right Edge = 51

#sf20v • Online • October 12-16

SACK Visualization #1

1st two packets arrive

Packet 4 arrives

Packet 5 arrives

11 - 30

11 - 30

11 - 30

41-50

41-60

Left Edge = 41

Right Edge = 51

Right Edge = 61

Left Edge = 41

#sf20v • Online • October 12-16

SACK Visualization #1

1st two packets arrive

Packet 4 arrives

Packet 5 arrives

Packet 3 arrives

All data received up through and including byte 60, receiver is ready for TCP
stream byte 61

11 - 30

11 - 30

11 - 30

11-60

41-50

41-60

Left Edge = 41

Right Edge = 51

Right Edge = 61

#sf20v • Online • October 12-16

Time for some decodes…

#sf20v • Online • October 12-16

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

#sf20v • Online • October 12-16

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

I’ve also received one or more

segment(s) out of order:

17619-19042r.

#sf20v • Online • October 12-16

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

I’ve also received one or more

segment(s) out of order:

17619-19042r.

What’s missing?

#sf20v • Online • October 12-16

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

I’ve also received one or more

segment(s) out of order:

17619-19042r.

What’s missing?

14771-17618r

#sf20v • Online • October 12-16

!! Heads Up !!

Prepare to observe awesome
Wireshark feature

#sf20v • Online • October 12-16

How did we get the columns?

Navigate to the TCP Options decodes

Highlight the field

Right

mouse

click

#sf20v • Online • October 12-16

Receiver Side TCP Mechanics

#sf20v • Online • October 12-16

Receiver’s ACK responses

• Pkt 1 Arrives, receiver starts delayed ACK timer,
waits for a 2nd packet

#sf20v • Online • October 12-16

Receiver’s ACK responses

• Pkt 2 Arrives, receiver cancels delayed ACK timer,
sends:
• ACK=31

#sf20v • Online • October 12-16

Receiver’s ACK responses

• Pkt 4 Arrives…, but wait!, it’s out of order…

• receiver issues immediate ACK because…

#sf20v • Online • October 12-16

Receiver’s ACK responses

• …the packet we just received is out of order

• Here’s the ACK and SACK info…
• ACK=31 SACK=41-51

#sf20v • Online • October 12-16

Receiver’s ACK responses

• Pkt 5 Arrives but it’s also out of order, receiver
issues another immediate ACK because packet is
not the expected segment (i.e. it’s OoO)
• ACK=31 SACK=41-61

• *** Note: at this point receiver TCP stack is holding up to 2 packets
in the receive buffer and can not provide to App ***

#sf20v • Online • October 12-16

Receiver’s ACK responses

• Pkt 3 Arrives, receiver issues:
• ACK=61

#sf20v • Online • October 12-16

Receiver’s ACK responses

• Pkt 3 Arrives, receiver issues:
• ACK=61

• Order is restored to the Force…

#sf20v • Online • October 12-16

Another Example, Slightly More Complicated

• Sender transmits a burst of 6 packets as follows:

• Pkt 1 SEQ=11 Len=10

• Pkt 2 SEQ=21 Len=10

• Pkt 3 SEQ=31 Len=10

• Pkt 4 SEQ=41 Len=10

• Pkt 5 SEQ=51 Len=10

• Pkt 6 SEQ=61 Len=10

#sf20v • Online • October 12-16

Another Example, Slightly More Complicated

• Due to a network problem, the packets are received in the following order:

• Pkt 1

• Pkt 3

• Pkt 6

• Pkt 4

• Pkt 5

• Pkt 2

#sf20v • Online • October 12-16

SACK Visualization #2
Packet 1 arrives

11 - 20

Start Delayed ACK Timer…

#sf20v • Online • October 12-16

SACK Visualization #2
Packet 1 arrives

Packet 3 arrives

11 - 20

11 - 20 31-40

ACK=21 SACK=31-41

Start Delayed ACK Timer…no ACK

#sf20v • Online • October 12-16

SACK Visualization #2
Packet 1 arrives

Packet 3 arrives

Packet 6 arrives

11 - 20

11 - 20 31-40

11 - 20 31-40 61-70

ACK=21 SACK=31-41

ACK=21 SACK=31-41, 61-71

Start Delayed ACK Timer…no ACK

#sf20v • Online • October 12-16

SACK Visualization #2
Packet 1 arrives

Packet 3 arrives

Packet 6 arrives

Packet 4 arrives

11 - 20

11 - 20 31-40

11 - 20 31-40 61-70

11 - 20 31-50 61-70

ACK=21 SACK=31-41

ACK=21 SACK=31-41, 61-71

ACK=21 SACK=31-51,61-71

Start Delayed ACK Timer…no ACK

#sf20v • Online • October 12-16

SACK Visualization #2

Packet 5 arrives
11 - 20 31-70

ACK=21 SACK 31-71

#sf20v • Online • October 12-16

Pop Quiz

Packet 5 arrives
11 - 20 31-70

ACK=21 SACK 31-71

How many packets

are in sender’s

retransmit queue?

#sf20v • Online • October 12-16

Pop Quiz

Packet 5 arrives
11 - 20 31-70

ACK=21 SACK 31-71

How many packets

are in receiver’s

queue?

#sf20v • Online • October 12-16

SACK Visualization #2

Packet 5 arrives

Packet 2 arrives

11 - 20 31-70

11-70

ACK=21 SACK 31-71

ACK=71

#sf20v • Online • October 12-16

We Made It!

#sf20v • Online • October 12-16

…more decodes…

#sf20v • Online • October 12-16

Example with two SACK blocks

#sf20v • Online • October 12-16

Example with two blocks OOS

#sf20v • Online • October 12-16

A Different Wireshark Profile

#sf20v • Online • October 12-16

! Heads Up !

Another cool Wireshark feature up next…

#sf20v • Online • October 12-16

Edit “Occurrence #”

• Right mouse click on column header

• Select “Edit Column”

#sf20v • Online • October 12-16

Coloring and Filtering Views

#sf20v • Online • October 12-16

View with Filter & Color

#sf20v • Online • October 12-16

Adventures from the Field

#sf20v • Online • October 12-16

Adventures from the Field

• Next we’re going to look at actual results from a
troubleshooting engagement involving crazy high
levels out of sequence packets

• Not just high levels of OOS, but crazy high…

#sf20v • Online • October 12-16

Scenario

• Pre-migration Performance Testing in Lab

• APP: Automation for virtual host provisioning

• Performance was so bad, unable to “green-light”
the migration

#sf20v • Online • October 12-16

Lab Configuration

Inter-Zone

Routing

New VM to be

provisioned OS Image

Server

Wireshark Capture Sources

Public Zone MGMT Zone

Traffic: Client Downloading OS Configuration Build Details from Server

1 Gbps Links with no other active traffic

FW FW IPSIPS

#sf20v • Online • October 12-16

Non-Technical Issues

• Finger pointing to the extreme…

• …each vendor (3) is sure they are innocent and
that it was the other vendor’s issue

• Challenge: Help Customer figure out why
throughput is so low, and help identify the vendor
causing the problem

#sf20v • Online • October 12-16

Advanced Analytics & Viz

• Let’s take a quick look at a visualization of the
performance issue, before we deep dive into the
packets

#sf20v • Online • October 12-16

Summary of Delays

#sf20v • Online • October 12-16

Summary of Delays

48.5 MB Xfer

117 x Retrans

20 x 3ACKs

49 x OOS

#sf20v • Online • October 12-16

Review: Bytes in Flight

• What does this metric tell us?

• Answer: the amount of stream bytes that are
outstanding on the network before sender
receives an ACK for the left most edge of the
current burst

• Usually reflects the sender’s Congestion Window

#sf20v • Online • October 12-16

In-flight Data Analysis

We will zoom in on the next few slides

#sf20v • Online • October 12-16

Zoom #1 - In-flight Data

#sf20v • Online • October 12-16

Zoom #2 - In-flight Data

#sf20v • Online • October 12-16

Zoom #3 - In-flight Data

#sf20v • Online • October 12-16

Questions / Discussion

#sf20v • Online • October 12-16

OOS Visualization + SACK Analysis

• The following section uses time lapse photography
to step you through a 19 packet burst chosen at
random

• The number, and nature, of out of sequence
packets is crazy high and it’s a nice example to
illustrate how to interpret the SACK field

#sf20v • Online • October 12-16

Impact on Performance

• It’s also a great example of how OOS can impact
performance & how you can interpret “how bad is
bad” with SACK

#sf20v • Online • October 12-16

ACK Packets Corresponding to a Packet Burst

• These are the ACKs from the client

#sf20v • Online • October 12-16

ACK Packets Corresponding to a Packet Burst

• Each ACK corresponds to one (or more) of the
19 payload packets in our random sample

• We’ll use these ACKs to determine the arrival
order for the 19 packets

#sf20v • Online • October 12-16

Before we start…. a quick Pop Quiz:

1. Why are there so many ACKs, I thought receiver is supposed to
ACK of every other packet?

#sf20v • Online • October 12-16

2. Why does the ACK packet size change between 66, 78, 86, and
94?

#sf20v • Online • October 12-16

3. Why is the receive window continuing to shrink?

#sf20v • Online • October 12-16

4. Why do we see so many duplicate ACKs?

#sf20v • Online • October 12-16

Questions / Comments

#sf20v • Online • October 12-16

#sf20v • Online • October 12-16

Pre-Departure Orientation

• 19 Slide Journey

• The top portion of the slide shows you which
packet in the burst has been received

• The bottom portion shows you the ACK and SACK
values extracted from the corresponding ACK
packets

• Each slide represents a new packet being received
and the state of all previously received packets

#sf20v • Online • October 12-16

Mgmt Frame

Orientation
Last Byte

#sf20v • Online • October 12-16

Mgmt Frame

Orientation

This is the frame order as

seen in the Public capture

(closest to Receiver)

Last Byte

#sf20v • Online • October 12-16

Mgmt Frame

Orientation

This is the frame order as

seen in the Public capture

(closest to Receiver)

Last Byte

This is the frame order as seen in the

Mgmt capture – traffic in transit to Public

(closest to Sender)

#sf20v • Online • October 12-16

Mgmt Frame

Orientation

This is the frame order as

seen in the Public capture

(closest to Receiver)

Packet Just Received

Bracketed in Red

Last Byte

This is the frame order as seen in the

Mgmt capture – traffic in transit to Public

(closest to Sender)

#sf20v • Online • October 12-16

Mgmt Frame

Orientation

This is the frame order as

seen in the Public capture

(closest to Receiver)

Packet Just Received

Bracketed in Red

Frames previously received

bracketed in Green

Last Byte

This is the frame order as seen in the

Mgmt capture – traffic in transit to Public

(closest to Sender)

#sf20v • Online • October 12-16

ACK Details for each packet received

This is the TCP Header from ACK

Packet’s Decode Summary

Last ByteMgmt Frame

#sf20v • Online • October 12-16

ACK Details for each packet received

This is the TCP Header from ACK

Packet’s Decode Summary

This is the value of the SACK from

TCP Options Field

Last ByteMgmt Frame

#sf20v • Online • October 12-16

Ready to start our Wild Ride….?
• Fasten your seat belt..

• Focus on the Cumulative ACK values and the SACK
values as each packet is received..

• Double check your understanding, ask if what
you’re seeing tracks with our earlier study of SACK

• Prior to the start of this sequence, receiver had
signaled that he’s ready to receive the stream
starting at byte:

1,085,576,095

#sf20v • Online • October 12-16

1st Packet Received

Last Byte

After receipt of the above packet (in Red), the receiver issued the following ACK

Mgmt Frame

#sf20v • Online • October 12-16

2nd Packet Received
Last Byte

After receipt of the above packet (in Red), the receiver issued the following ACK

Mgmt Frame

#sf20v • Online • October 12-16

3rd Packet Received

Last Byte

Notice the cumulative ACK has

increased to a value of 1085577543

SACK Field has not changed

Mgmt Frame

#sf20v • Online • October 12-16

4th Packet Received
Last Byte

Right edge changed

Mgmt Frame

#sf20v • Online • October 12-16

5th Packet Received
Mgmt Frame Last Byte

Right edge changed

#sf20v • Online • October 12-16

5th Packet Received
Mgmt Frame Last Byte

Right edge changed, and the order of the blocks has changed

#sf20v • Online • October 12-16

Packet #6
Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #7
Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #8

SACK now indicates three groups of non-contiguous

stream bytes have been received

Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #9
Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #10
Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #11
Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packets #12 + 13
Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #14

Notice that two of the dis-contiguous

blocks are now contiguous; so we go

from 3 blocks down to 2 blocks

Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #15

Notice the cumulative ACK has increased to

a value of 1085592023 and we’re down to

just one dis-contiguous block

Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #16

Left edge updated to reflect packet #16

Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #17

Cumulative ACK is updated to reflect receipt of #17

No change to SACK fields

Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #18

Right edge updated to reflect packet #18

Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Packet #19

New cumulative ACK reflects receipt of all 19 packets

(Plus, packet 20 not shown in the list….)

Mgmt Frame Last Byte

#sf20v • Online • October 12-16

After packet 19

It’s been a long, strange journey, but all data has finally been received

Mgmt Frame Last Byte

#sf20v • Online • October 12-16

Buffer Mgmt Issues?

• FIFO?

• LIFO?

• UFO?

• IFFY?

#sf20v • Online • October 12-16

Questions / Comments

#sf20v • Online • October 12-16

• This is where the presentation stopped

• Slide deck will be uploaded to the Sharkfest
Retrospective micro-site

#sf20v • Online • October 12-16

Outcome from this Study

• Client was very pleased that we could help them
understand the full extent of the OOS problem
• Showed that packets are not “just a little out of
sequence” but significantly out of sequence

• Definitely impacted sender’s ability to maintain a large
congestion window

• Client re-evaluated plans to deploy more IPS devices

#sf20v • Online • October 12-16

Outcome from this Study

• Client shared results with their IPS vendor which
triggered a major investigation into stream and
buffer management in the IPS

#sf20v • Online • October 12-16

Outcome from this Study

• A few months later we tested a new model of IPS
in Client’s lab

• Some improvement but still a problem even at low
throughput levels

#sf20v • Online • October 12-16

Cause and Effect

#sf20v • Online • October 12-16

Review: Effect of the OOS on the sender

• Potential Throughput Killer: Will likely trigger TCP
congestion window reduction if he has to
retransmit

• Dependent on the OS and patch level of the
sender…and possibly the NIC driver (maybe)

• The RFC for SACK has a lot of “should”s and
“may”s.
• The implementer is allowed a lot flexibility in how they handle the

SACK information provided by the receiver

#sf20v • Online • October 12-16

Effect of the SACK field on the sender

• Consider: should the sender retransmit just one
missing segment, or if he can see from the SACK
that lot’s of different packets are missing should
he retransmit all of them

• Also, sender has to maintain all packets in the
retransmit queue until they’ve been ACK’d,
possible stress on memory

#sf20v • Online • October 12-16

Impact on Receiver

• He has to buffer all out of sequence packets

• Can not deliver any discontinuous stream bytes to
the app until all missing packets are received

• Will generate more ACKs – one for each OOS
packet received

• What happens if there are lots of gaps?
• Remember SACK can only record up to 4 gaps (3 if timestamp

option is also being used)

#sf20v • Online • October 12-16

Ready to Wrap?

• Let’s look at a few reminders…

#sf20v • Online • October 12-16

Reminders

• You can quickly determine presence of SACK in
Wireshark using a display filter!

• “tcp.options.sack.count”

• You can easily add SACK related columns to
Wireshark GUI

#sf20v • Online • October 12-16

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

#sf20v • Online • October 12-16

Power of Profiles

#sf20v • Online • October 12-16

Closing Remarks
• Focus on “Bytes in Flight” Data

• If you see the congestion window constantly closing or reduced by
half, then you need to figure out why

• Interpreting SACK might help complete the picture

• It’s easy to get lost drilling in to SACK fields…

• It’s prudent to interpret some of them and make a
high level assessment as to the extent of OOS
packets
• To interpret them you have to understand the RFC and expected

behavior

#sf20v • Online • October 12-16

Closing Remarks

• If you have a lot of SACKs with 3 or 4 gaps
declared, then OOS is “high” / “pervasive”

• If you have a few SACKs with only 1 gap each,
then OOS may be less of a contributing factor to
slow performance

#sf20v • Online • October 12-16

End of Session

#sf20v • Online • October 12-16

Appendix

#sf20v • Online • October 12-16

Firewall Effects

• Some firewalls will randomize the starting TCP
SYN sequence number when new connections are
created

• The receiver only knows the randomized version
of the sequence numbers generated by the
Firewall

#sf20v • Online • October 12-16

Firewall Effects

• When receiver creates ACKs with SACK values, the
SACK sequence numbers will not match the
sequence numbers in the TCP header known by
the sender
• Firewall will always restore the original sequence
numbers in the TCP header only

• …but no guarantees for translating the SACK field

• This generally makes the SACK field unusable for the
sender

#sf20v • Online • October 12-16

Example of Firewall SEQ
Randomization• SACK sequence numbers bare no resemblance to

the SEQ or ACK in the TCP header

#sf20v • Online • October 12-16

Example of Firewall SEQ
Randomization• Zoom in from previous slide

#sf20v • Online • October 12-16

SACK is not a Promise

#sf20v • Online • October 12-16

Effect of out of sequence arrivals on
the receiver

• Receiver is allowed to “reneg” if he runs out of
buffer space

#sf20v • Online • October 12-16

Effect on Sender’s NIC
• What if TSO is enabled?

• What if TCP Chimney is enabled (Windows)?

• Who is managing the retransmit queue…the TCP
Stack on the OS or the NIC?

• I pose these questions because they might be
important...

• The specific NIC brand, driver version, and firmware
version may impact answers to the above..

#sf20v • Online • October 12-16

Effect on Sender’s ESX Host NIC

• What if TSO is enabled on the Physical NIC?

• Who is managing the retransmit queue…the TCP
Stack on ESX, NIC, OS or the vNIC?

• The specific NIC brand, driver version, and firmware
version may impact answers to the above..

#sf20v • Online • October 12-16

Supplemental Analytics Help

