
#sf20v • Online • October 12-16

SharkFest’20 Virtual

#sf20v • Online • October 12-16

USB Analysis 101

Using Wireshark to analyze USB traffic

Tomasz Moń

#sf20v • Online • October 12-16

Table of contents

• Introduction

• Terminology, speeds, connectors overview

• Why USB 2.0 is still relevant?

• USB transfer types and device classes

• USB traffic capture

• USB “Packets”

• Software vs hardware sniffers

• Example traffic: USB Mass Storage

• Summary

• Questions & Answers

#sf20v • Online • October 12-16

Basic USB terminology

USB Analogous to

Host Requester, DHCP server

Device Responder

Port Physical port connector

Hub Switch, Hub

Address Local IP address

Endpoint Buffer, TCP/UDP Port

Class Communication Protocol

Descriptor Datasheet

VID OUI

PID Product code

#sf20v • Online • October 12-16

USB connectors

Image from Wikipedia licensed under CC BY-SA 3.0.

As there is just a single differential pair in
USB 2.0, only Half-Duplex communication
is possible

Pin Mini/Micro Pin Name

1 1 VBUS

2 2 D−

3 3 D+

N/A 4 ID

4 5 GND

5 6 SSTx-

6 7 SSTx+

7 8 GND

8 9 SSRx-

9 10 SSRx+

USB 3.0 is dual-simplex

https://commons.wikimedia.org/wiki/File:USB_2.0_and_3.0_connectors.svg
http://creativecommons.org/licenses/by-sa/3.0/

#sf20v • Online • October 12-16

USB speeds

USB 2.0 features three transmission speeds:

• Low speed (1.5 Mbps)

• Full speed (12 Mbps)

• High speed (480 Mbps)

USB 3.x is a bit more complex:

• SuperSpeed 3.2 Gen 1x1 (5 Gbps) (formerly USB 3.0)

• SuperSpeed+ 3.2 Gen 2x1 (10 Gbps; 1 lane) (formerly USB 3.1)

• SuperSpeed+ 3.2 Gen 1x2 (10 Gbps; 2 lanes) (USB-C required)

• SuperSpeed+ 3.2 Gen 2x2 (20 Gbps; 2 lanes) (USB-C required)

#sf20v • Online • October 12-16

USB Type C connector

Image from Wikipedia licensed under CC BY-SA 4.0.

https://commons.wikimedia.org/wiki/File:USB_Type-C_Receptacle_Pinout.svg
http://creativecommons.org/licenses/by-sa/4.0/

#sf20v • Online • October 12-16

Speed detection

• Low speed devices feature 1.5 kΩ pull-up resistor on D-

• Full speed devices feature 1.5 kΩ pull-up resistor on D+

• High speed devices starts as Full speed, and switch to High speed
after chirping sequence (D+ pull-up is disabled after chirp to
balance the lines)

• USB 3.x link negotiation is much more complex, utilizing side band
communication called Low Frequency Periodic Signaling (LFPS)

#sf20v • Online • October 12-16

Why USB 2.0 is still relevant?

• USB 3.x and USB 4.0 are not replacing USB 2.0
Backwards compatibility is achieved by dual bus
The upper layers are pretty much the same

• Every USB 3.x hub contains both USB 2.0 and USB 3.x hub inside

• USB 3.x and USB-C connectors contain dedicated USB 2.0 D+/D-
All USB 2.0 rules apply on D+/D- signals

• There's a lot of devices that are fine with USB 2.0 speeds:

• Keyboard

• Mouse

• Controllers

#sf20v • Online • October 12-16

USB Transfer Types

USB generalizes all possible transfers into 4 types:

• Control
Used for handling commands, e.g. GET DESCRIPTOR
Class and vendor commands possible, e.g. volume adjustment

• Interrupt
Periodic, guaranteed latency, retry on errors, e.g.: keyboard, mouse

• Isochronous
Periodic, guaranteed bandwidth, no retry or guarantee of delivery, e.g.: audio

• Bulk
Transfer large data, retry on errors, e.g.: mass storage

#sf20v • Online • October 12-16

USB Classes
the communication protocols

USB specific classes, e.g.:

• Hub

• Human Interface Device (HID)

Protocol wrappers, e.g.:

• Mass Storage Class (MSC)

• Communications Device Class (CDC)

• Printer

Vendor specific:

• Quite a few 

#sf20v • Online • October 12-16

libusb – a cross-platform library
to access USB devices

• Works out-of-the-box on Linux, on Windows needs generic USB driver

• Automated WinUSB installation is possible if device implements WCID
• String descriptor 0xEE with “MSFT100” + Vendor Code (1 byte) + Padding (0x00)

• Two vendor feature descriptors: Microsoft Compatible ID and Microsoft Extended Properties

#sf20v • Online • October 12-16

USB traffic capture

USB traffic can be captured in software:

• On Linux using usbmon module

• On Windows using USBPcap

There are Open Source hardware USB 2.0 sniffers available:

• OpenVizsla

• LambdaConcept USB2Sniffer

Sigrok can decode Low and Full speed signaling (capture with logic analyzer)

To my best knowledge, there are no Open Source USB 3.x hardware sniffers.

#sf20v • Online • October 12-16

sudo modprobe usbmon

#sf20v • Online • October 12-16

Wireshark extcap

#sf20v • Online • October 12-16

USBPcap extcap options

#sf20v • Online • October 12-16

OpenVizsla extcap options

OpenVizsla PCBA photo from sysmocom webshop.

http://shop.sysmocom.de/products/openvizsla-v3-dot-2-usb-protocol-analyzer-pcba

#sf20v • Online • October 12-16

USB „Packets”

Wireshark shows what the capture engine provided, e.g.:

• libpcap (usbmon) provides "USB packets with Linux header and padding"

• USBPcap provides "USB packets with USBPcap header"

• OpenVizsla provides "USB 2.0/1.1/1.0 packets"

The "USB 2.0/1.1/1.0 packets" are described in USB 2.0 Specification, Chapter 8.

Software sniffers capture USB Request Blocks submitted to the host controller driver.

The "Linux header" and "USBPcap header" contain OS specific URB information.

#sf20v • Online • October 12-16

Device Descriptor
Request

#sf20v • Online • October 12-16

Device Descriptor
Response

#sf20v • Online • October 12-16

Configuration Descriptor
Request

#sf20v • Online • October 12-16

Configuration Descriptor
Response

#sf20v • Online • October 12-16

Configuration Descriptor
Request

#sf20v • Online • October 12-16

Configuration Descriptor
Response

#sf20v • Online • October 12-16

Configuration Descriptor
Response

#sf20v • Online • October 12-16

String Descriptor 0
Request

#sf20v • Online • October 12-16

String Descriptor 0
Response

#sf20v • Online • October 12-16

String Descriptor 0
Request (4 bytes)

#sf20v • Online • October 12-16

String Descriptor 0
Response (4 bytes)

#sf20v • Online • October 12-16

String Descriptor 3 (iSerialNumber)
Request

#sf20v • Online • October 12-16

String Descriptor 3 (iSerialNumber)
Response

#sf20v • Online • October 12-16

String Descriptor 3 (iSerialNumber)
Request

#sf20v • Online • October 12-16

String Descriptor 3 (iSerialNumber)
Response

#sf20v • Online • October 12-16

Set Configuration
Request

#sf20v • Online • October 12-16

Set Configuration
Response

#sf20v • Online • October 12-16

Set Interface
Request

#sf20v • Online • October 12-16

Set Interface
Response

#sf20v • Online • October 12-16

MSC Class GET MAX LUN
Request

#sf20v • Online • October 12-16

MSC Class GET MAX LUN
Response

#sf20v • Online • October 12-16

SCSI command
on Bulk OUT endpoint

#sf20v • Online • October 12-16

SCSI command
on Bulk OUT endpoint

#sf20v • Online • October 12-16

What software sniffers show?

Device driver submits URB, HCD handles URB and reports back to Device driver.

All software sniffer “packets” contain OS specific metadata (URB ID, endpoint, …)

OUT (send to device) IN (receive from device)

Host→Device Device→Host Host→Device Device→Host

Control
SETUP Data (8 bytes) +
Payload (if wLength > 0)

Indicates that URB
handling is done

(result code is OS
specific)

SETUP Data
(8 bytes)

Payload (if wLength > 0)*

Interrupt Payload Indicates that
device driver

requested host to
start read
attempts

Payload*

Bulk Payload Payload*

Isochronous Payload Payload*

* Metadata only if the URB has failed/was cancelled, e.g. device was disconnected, STALL occurred, …

#sf20v • Online • October 12-16

SCSI response
on Bulk IN endpoint

#sf20v • Online • October 12-16

SCSI response
on Bulk IN endpoint

#sf20v • Online • October 12-16

What about Max Packet Size?

• Endpoint 1 wMaxPacketSize is 512 bytes

• SCSI Reponse in „USBPcap packet” was 8192 bytes

• Software USB sniffers capture USB Request Blocks (URBs)

• USB host converts URBs into USB packets

• To see USB packets we have to use hardware sniffer

#sf20v • Online • October 12-16

URB „packets” and USB packets

#sf20v • Online • October 12-16

SCSI Response
over multiple packets

#sf20v • Online • October 12-16

USB is a polled bus
so there are NAKs

#sf20v • Online • October 12-16

USB is a polled bus
so there are NAKs

#sf20v • Online • October 12-16

Summary

• USB 2.0 is still relevant today

• USB 3.x backwards compatibility with USB 2.0 is achieved by dual bus

• Host initiates all communication

• IN and OUT is always from Host perspective

• Device cannot send data unless host asks for it (driver submits “IN” URB)

• Software sniffers capture URBs

• Every URB is captured as 2 “URB packets”

• Driver to HCI includes data payload from host to device (if any)

• HCI to driver includes data payload from device to host (if any)

• URB level capture is sufficient for general use

• Understanding USB at packet level helps make sense out of the “URB packets”

#sf20v • Online • October 12-16

Q & A

