Dissecting WPA3

wpa3-psk.pcap		- 🗆 ×
	マプチャ(C) 分析(A) 統計(S) 電話(y) 興線(W) ツール(T) へ	ルプ(4)
	* 🕾 T 1 📜 📃 Q Q Q II	
wlan.fc.type==0 or wlan.fc.type		図ロ・)* ラズパイのMAC TCPストリームを抽出
No. Time	Source Destination Protocol	Length Info
10.000000	02:0… Broa… 802.11	136Beacon frame, SN=0, FN=0, Flags=, BI=100, SSID=WPA3-Network
20.085497	02:0… Broa… 802.11	105Probe Request, SN=0, FN=0, Flags=, SSID=Wildcard (Broadcast)
30.085789	02:0 02:0 802.11	130 Probe Response, SN=0, FN=0, Flags=, BI=100, SSID=WPA3-Network
53.634814	02:0 02:0 802.11	150 Authentication, SN=11, FN=0, Flags=
73.678653	02:0 02:0 802.11	150 Authentication, SN=1, FN=0, Flags=
93.679780	02:0 02:0 802.11	86 Authentication, SN=12, FN=0, Flags=
113.681400	02:0 02:0 802.11	86 Authentication, SN=2, FN=0, Flags=
133.686583	02:0 02:0 802.11	141Association Request, SN=13, FN=0, Flags=, SSID=WPA3-Network
153.686761	02:0 02:0 802.11	78Association Response, SN=3, FN=0, Flags=
173.689229	02:0 02:0 EAPOL	175Key (Message 1 of 4)
193.783343	02:0 02:0 EAPOL	181Key (Message 2 of 4)
213.783713	02:0 02:0 EAPOL	241Key (Message 3 of 4)
233.829218	02:0 02:0 EAPOL	153Key (Message 4 of 4)

Shark**Fest** '22 US Kansas City, MO July 9-14

#sf22us

Megumi Takeshita

Ikeriri network service

Materials: all trace files, python codes are here https://www.ikeriri.ne.jp/sharkfest/03DissectingWPA3.zip

Megumi Takeshita, packet otaku

- Founder, ikeriri network service co., Itd #sf22us
- Reseller of CACE technologies in 2008
- Worked SE/IS at BayNetwork, Nortel
- Wrote 10+ books about Wireshark
- Instruct Wireshark to JSDF and other company
- Reseller of packet capture / wireless-tools
- One of the contributors of Wireshark
- Translate Wireshark into Japanese

📕 About Wir	eshark							?	×
Wireshark	Authors	Folders	Plugins	Keyboard Shortcuts	License				
megumi									
竹下 恵	竹下 恵 (Megumi Takeshita) <megumi[at]ikeriri.ne.jp></megumi[at]ikeriri.ne.jp>								

Session Details

We need a new security standard in the 6/6E generation of WiFi WPA3 has an SAE (Simultaneous Authentication of Equals) authentication handshake and PMF (Protected Management Frames) mechanism. In this session, Megumi shows you WPA3 trace analysis using Wireshark. Follow the packets and understand the safe way to use the wireless network

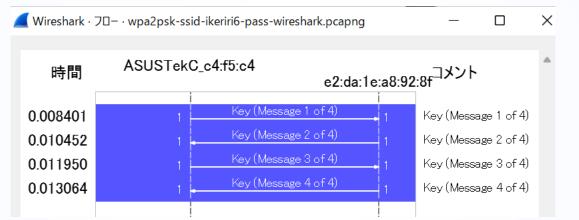
<u>Materials</u>

all trace files and Wireshark profiles are here https://www.ikeriri.ne.jp/sharkfest/03DissectingWPA3.zip

WPA2-PSK dissection

 Open wpa2psk-ssid-ikeriri6-pass-wireshark.pcaping this trace is captured and decrypted by TamoSoft CommView for WiFi in the WiFi6 environment

Shark**Fest**'22 US


 It is a typical linkup process of WPA2-PSK between iphone13 (private MAC address) and ASUS AP

Time	PHY type	Channel	data E 💲	Signal (dBm)	Noise (dBm)	data N Data rat	e Retry	Type/Subtype
1 0.000000	802.11a (OFDM)	56		-39 dBn	1 -93 dBm		6 Frame is not…	Authentication
2 0.001283	802.11a (OFDM)	56		-33 dBn	n -93 dBm		6 Frame is not…	Authentication
3 0.002746	802.11a (OFDM)	56		-41 dBn	n -93 dBm		6 Frame is not…	Association Request
4 0.005013	802.11a (OFDM)	56		-33 dBn	1 -93 dBm		6 Frame is not…	Association Response
5 0.008401	802.11a (OFDM)	56		-33 dBn	1 -93 dBm		6 Frame is not…	QoS Data
6 0.010452	802.11a (OFDM)	56		-41 dBn	1 -93 dBm		6 Frame is not…	QoS Data
7 0.011950	802.11a (OFDM)	56		-33 dBn	1 -93 dBm		6 Frame is not…	QoS Data
8 0.013064	802.11a (OFDM)	56		-41 dBn	1 -91 dBm		6 Frame is not…	QoS Data
9 0.072760	802.11ax (HE)	56	20	-41 dBn	n -91 dBm	0xb 270	.8 Frame is not…	QoS Data
10 0.072892	802.11ax (HE)	56	20	-41 dBn	n -91 dBm	0xb 270	.8 Frame is not…	QoS Data
11 0.073031	802.11ax (HE)	56	20	-41 dBn	n -91 dBm	0xb 270	.8 Frame is not…	QoS Data
12 0.073376	802.11ax (HE)	56	20	-41 dBn	n -91 dBm	0xb 270	.8 Frame is not…	QoS Data
13 0.073578	802.11a (OFDM)	56		-33 dBn	n -91 dBm		6 Frame is not…	Data

4way handshake (common in WPA2 and WPA3) kFest 22 US There are 4 way handshake after link-up process City, MO

5

Enter "eapol" in Display filter and make FlowGraph

 At first, AP sends Key(Message 1 of 4) and STA reply Key (Message 2 of 4) to exchange PTK for unicast. Then AP sends Key (Message 3 of 4), STA replies.
 Key (Message 4 of 4) to confirm GTK for multicast.

- The passphrase is used for PSK(Pre Shared Key insas City, MO
- PMK (Pairwise Master Key) is created by 4096 round times calculation of PBKDF2 hash function, #sf22us with SHA1 algorithm, using PSK and SSID
 e.x. PMK = pbkdf2_hmac('sha1', PSK, SSID,4096)
- Lets's start checking PMK using Wireshark Go back to the trace, wpa2psk-ssid-ikeriri6-passwireshark.pcapng, and check the #5 packet, the first EAPOL message 1/4

🚄 wpa2psk-ssid-ikeriri6-pass-wireshark.pcapng

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Set Decryption key in Wireshark

Frame 5: 165 bytes on wire (1320 bits), 165 bytes captured (1320 bits) on interface unknown, id 0

Radiotap Header v0, Length 32

80%	2.1	1	ra	arc	- 3	1n†	or	mat	-10	ρn	
тс		00	2	11	0.	~ C	D o	to	C	:1	

TEEE ONY TT AND DARS .	France P			
Type/Subtype: QoS	Expand Subtrees			
> Frame Control Fie	Collapse Subtrees			
.000 0000 0011 11	Expand All			
Receiver address:	Collapse All			
Transmitter addre Destination addre	Apply as Column	Ctrl+Shift+I		
Source address: /	Apply as Filter	+		
BSS Id: ASUSTekC_	Prepare as Filter	•		
STA address: e2:c	Conversation Filter	,		
00	Colorize with Filter	•		
0000 0000 0000	Follow	,		
> Qos Control: 0x00	-			
Logical-Link Control	Сору	•		
802.1X Authenticatio	Show Packet Bytes	Ctrl +Shift+O		
Version: 802.1X-2	Export Packet Bytes	Ctrl +Shift+X		
Type: Key (3)	11012 Dente del Dene			
Length: 95	Wiki Protocol Page			
Key Descriptor Ty	Filter Field Reference			
[Message number: > Key Information:	カトコル設定	•		Open IEEE 802.11 wireless LAN preferences
Key Length: 16	Decode As	Ctrl+Shift+U	\checkmark	Reassemble fragmented 802.11 datagrams
SPA IPHEIII IN	Go to Linked Packet			Ignore vendor-specific HT elements
	Show Linked Packet in New Window	r	\checkmark	Call subdissector for retransmitted 802.11 fra

Wireshark · Preferences

HNBAP HP_ERM HPFEEDS HSMS		IEEE 802.11 wireless LAN Reassemble fragmented 802.11 datagrams Jgnore vendor=specific HT elements
HSRP		Call subdissector for retransmitted 802.11 frames
HTTP		Assume packets have FCS
HTTP2		Validate the FCS checksum if possible
IAPP	Ш	Ignore the Protection bit
IAX2		O No
IB		Yes - without IV
ICAP		Yes - with IV
ICEP		Enable WPA Key MIC Length override
ICMP		
ICP		WPA Key MIC Length override 0
ICQ		Treat as S1G
IEC 60870-5-101		🗹 Enable decryption
IEC 60870-5-103 IEC 60870-5-104		Decryption keys Edit
IEEE 802.11		

 Select "IEEE 802.11 QoS Data, Flags:F." header, right-click and choose Protocol preference > Open IEEE802.11 wireless preferences...

 Click "Edit..." button of the **Decryption keys**

#sf22us

• We can set 5 styles of WEP and WPA decryption keys in Wireshark 3.6

	Key,	stype	explanation
wep 🗸	wep	WEP key (hex value)	for WEP encryption
wep	wpa-pwd	Passphrase:SSID (ascii)	For WPA1-PSK, WPA2-PSK
wpa-pwd wpa-psk	wpa-psk	Raw PSK (hex value)	256-bit pre-shared ("raw") key https://www.wireshark.org/tools/wpa-
tk msk	tk	Temporal Key (hex value)	<u>psk.html</u> TK is used for actual encryption key, TK is a part of PTK (Pairwise-Transient-Key)
	msk	Master Session Key (hex value)	Master Session key is derived from 802.1x EAP authentication process if you use WPA1-EAP, WPA2-EAP. You can set msk from the debug information of the AP and wireless lan

controller.

SharkFest '22US Set key type as "wpa-pwd" and input key "wireshark: ikeriri6" in decryption key dialog

#sf22us	5
---------	---

×

Kansas City, MO

July 9-14

Key type	Кеу
wpa-pwd	wireshark:ikeriri6

×

	Wireshark · Preferences	
--	-------------------------	--

		_	
HNBAP			IEEE 802.11 wireless LAN
HP_ERM	Л		Reassemble fragmented 802.11 datagrams
HPFEED)S		
HSMS			Ignore vendor-specific HT elements
HSRP			🗹 Call subdissector for retransmitted 802.11 frames
HTTP			Assume packets have FCS
HTTP2			Validate the FCS checksum if possible
IAPP		Lİ.	Ignore the Protection bit
IAX2		1	O No
IB			Yes - without IV
ICAP			○ Yes = with IV
ICEP			Enable WPA Key MIC Length override
ICMP			
ICP			WPA Key MIC Length override
ICQ			Treat as S1G
IEC 608	70-5-101		Enable decryption
IEC 608	70-5-103		
IEC 608	70-5-104		Decryption keys Edit
IEEE 80	2.11		
IFFF 00	0 4 E 4		

 Click "OK" to close WEP and WPA decryption Keys dialog "OK" again to close IEEE802.11 wireless LAN preference

Confirm your QoS Data frames are decrypted

10

<u> </u>										
No.	Time	PHY type	Chanr data E	Signal (dBm	Noise (dBn data N	Data rat Retry	Type/Subtype	Source	Destination	Lengti Info
	10.000	802.11a (OFDM)	56	-39 dBm	-93 dBm	6 Frame is …	Authentication	e2:da:1e:a8:92:8f	ASUSTekC	97 Authentication, SN=833, FN=0, Flags=
	2 0.001	802.11a (OFDM)	56	-33 dBm	-93 dBm	6 Frame is …	Authentication	ASUSTekC_c4:f5:c4	e2:da:1e…	62 Authentication, SN=0, FN=0, Flags=
	3 0.002	802.11a (OFDM)	56	-41 dBm	-93 dBm	6 Frame is …	Association Request	e2:da:1e:a8:92:8f	ASUSTekC	237 Association Request, SN=834, FN=0, Flags=, SSID=ikeriri6
	4 0.005	802.11a (OFDM)	56	-33 dBm	-93 dBm	6 Frame is …	Association Response	ASUSTekC_c4:f5:c4	e2:da:1e…	318 Association Response, SN=1, FN=0, Flags=
	5 0.008	802.11a (OFDM)		-33 dBm	-93 dBm	6 Frame is …	QoS Data	ASUSTekC_c4:f5:c4	e2:da:1e…	165 Key (Message 1 of 4)
	6 0.010	802.11a (OFDM)		-41 dBm	-93 dBm	6 Frame is …	QoS Data	e2:da:1e:a8:92:8f	ASUSTekC	187 Key (Message 2 of 4)
	7 0.011	802.11a (OFDM)		-33 dBm	-93 dBm	6 Frame is …	QoS Data	ASUSTekC_c4:f5:c4	e2:da:1e…	253 Key (Message 3 of 4)
	8 0.013	802.11a (OFDM)	56	-41 dBm	-91 dBm	6 Frame is …	QoS Data	e2:da:1e:a8:92:8f	ASUSTekC	165 Key (Message 4 of 4)
	9 0.072	802.11ax (HE)	56 20	-41 dBm	-91 dBm 0xb	270.8 Frame is …	QoS Data	e2:da:1e:a8:92:8f	IPv6mcas…	170 QoS Data, SN=0, FN=0, Flags=opT
	10 0.072…	802.11ax (HE)	56 20	-41 dBm	-91 dBm 0xb	270.8 Frame is …	QoS Data	e2:da:1e:a8:92:8f	ASUSTekC	126 QoS Data, SN=1, FN=0, Flags=opT
	11 0.073	802.11ax (HE)	56 20	-41 dBm	-91 dBm 0xb	270.8 Frame is …	QoS Data	e2:da:1e:a8:92:8f	Broadcast	426 QoS Data, SN=2, FN=0, Flags=opT
	12 0.073	802.11ax (HE)	56 20	-41 dBm	-91 dBm 0xb	270.8 Frame is …	QoS Data	e2:da:1e:a8:92:8f	IPv6mcas…	146 QoS Data, SN=3, FN=0, Flags=opT
	13 0.073	802.11a (OFDM)	56	-33 dBm	-91 dBm	6 Frame is …	Data	::	ff02::1:…	136 Neighbor Solicitation for fe80::1c42:c607:6801:27fa
<u></u>										
No.	Time	PHY type	Chanr data E	E Signal (dBm	Noise (dBn data N			Source	Destination	_
		802.11a (OFDM)	56	-39 dBm	-93 dBm	6 Fran		a:1e:a8:92:8f	ASUSTekC	97 Authentication, SN=833, FN=0, Flags=
		802.11a (OFDM)	56	-33 dBm	-93 dBm	6 Frame is			e2:da:1e…	62 Authentication, SN=0, FN=0, Flags=
		802.11a (OFDM)	56	-41 dBm		6 Frame is …			ASUSTekC	237 Association Request, SN=834, FN=0, Flags=, SSID=ikeriri6
		802.11a (OFDM)	56	-33 dBm		6 Frame is …			e2:da:1e	318 Association Response, SN=1, FN=0, Flags=
		802.11a (OFDM)		-33 dBm		6 Frame is …			e2:da:1e	165 Key (Message 1 of 4)
		802.11a (OFDM)		-41 dBm		6 Frame is …				187 Key (Message 2 of 4)
	7 0.011	802.11a (OFDM)	56	-33 dBm	-93 dBm	6 Frame is …	DoS Data	ASUSTekC c4:f5:c4	e2:da:1e	253 Key (Message 3 of 4)
		802.11a (OFDM)	56	-41 dBm	-91 dBm	6 Frame is …	QoS Data	e2:da:1e:a8:92:8f	ASUSTekC	165 Key (Message 4 of 4)
	9 0.072	802.11ax (HE)	56 56 20	-41 dBm -41 dBm	-91 dBm -91 dBm 0xb	6 Frame is 270.8 Frame is	QoS Data QoS Data	e2:da:1e:a8:92:8f ::	ASUSTekC ff02::1:	165 Key (Message 4 of 4) 170 Neighbor Solicitation for fe80::1c42:c607:6801:27fa
	9 0.072 10 0.072	802.11ax (HE) 802.11ax (HE)	56 56 20 56 20	-41 dBm -41 dBm -41 dBm	-91 dBm -91 dBm 0xb -91 dBm 0xb	6 Frame is 270.8 Frame is 270.8 Frame is	QoS Data QoS Data QoS Data	e2:da:1e:a8:92:8f :: e2:da:1e:a8:92:8f	ASUSTekC ff02::1: ASUSTekC	165 Key (Message 4 of 4) 170 Neighbor Solicitation for fe80::1c42:c607:6801:27fa 126 Who has 192.168.50.1? Tell 192.168.50.236
	9 0.072 10 0.072 11 0.073	802.11ax (HE) 802.11ax (HE) 802.11ax (HE)	56 56 20 56 20 56 20	-41 dBm -41 dBm -41 dBm -41 dBm	-91 dBm -91 dBm 0xb -91 dBm 0xb -91 dBm 0xb	6 Frame is 270.8 Frame is 270.8 Frame is 270.8 Frame is	QoS Data QoS Data QoS Data QoS Data QoS Data	e2:da:1e:a8:92:8f :: e2:da:1e:a8:92:8f 0.0.0.0	ASUSTekC ff02::1: ASUSTekC 255.255	165 Key (Message 4 of 4) 170 Neighbor Solicitation for fe80::1c42:c607:6801:27fa 126 Who has 192.168.50.1? Tell 192.168.50.236 426 DHCP Request - Transaction ID 0xac9e7500
	9 0.072 10 0.072 11 0.073 12 0.073	802.11ax (HE) 802.11ax (HE)	56 56 20 56 20	-41 dBm -41 dBm -41 dBm -41 dBm	-91 dBm -91 dBm 0xb -91 dBm 0xb -91 dBm 0xb -91 dBm 0xb -91 dBm 0xb	6 Frame is 270.8 Frame is 270.8 Frame is	QoS Data QoS Data QoS Data QoS Data QoS Data	e2:da:1e:a8:92:8f :: e2:da:1e:a8:92:8f	ASUSTekC ff02::1: ASUSTekC 255.255 ff02::2	165 Key (Message 4 of 4) 170 Neighbor Solicitation for fe80::1c42:c607:6801:27fa 126 Who has 192.168.50.1? Tell 192.168.50.236

 Choose first QoS Data frame #9 and open IEEE802.11 QoS Data Header > CCMP (Counter mode with Cipher-block chaining Message authentication code Protocol) parameters

TK(wlan.analysis.tk) and PMK(wlan.analysis.pmk//sas City, MO

Julv 9-14

#sf22us

CCMP parameters

CCMP Ext. Initialization Vector: 0x00000000002 Key Index: 0 [TK: 4c102fd43613c535404d0777088a6503] [PMK: 31bb75a609a424aac01e9929b39458e87ea45b0f30204ff5642bf3067a6fd31f]

- Wireshark decrypt 4way handshake and add generated fields, TK(Temporal Key), actual AES key of the communication and PMK(Pairwise Master Key) 32 bytes(256bit), 4096 round times calculation of PBKDF2 function with SHA1 algorithm, using PSK and SSID
- We can also test this calculation by Python from hashlib import pbkdf2_hmac pwd="wireshark" ssid="ikeriri6" pmk = pbkdf2_hmac('sha1', pwd.encode('ascii'), ssid.encode('ascii'), 4096, 32) print(pmk.hex())

pmk = pbkdf2 hmac('sha1', pwd.encode('ascii'), ssid.encode('ascii'), 4096, 32)

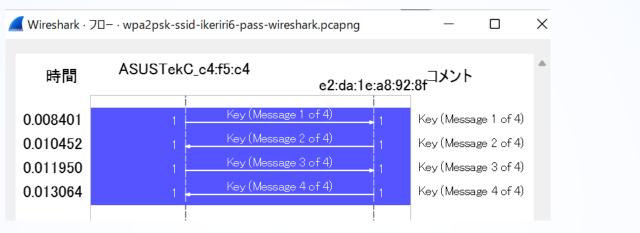
#sf22us

Run pmk.py to check the PMK from the output with Wireshark [PMK:] field, it is the same value

gWPA3> & C:/Users/TakeshitaMegumi/AppData/Local/Microsoft/WindowsApps/python3.9.exe "c:/Users/TakeshitaMegumi, neDrive - いけりりネットワークサービス株式会社/Sharkfest/Sharkfest2022/03DissectingWPA3/psk.py" 31bb75a609a424aac01e9929b39458e87ea45b0f30204ff5642bf3067a6fd31f

[PMK: 31bb75a609a424aac01e9929b39458e87ea45b0f30204ff5642bf3067a6fd31f]

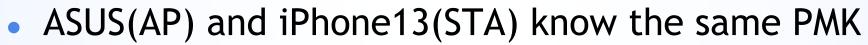
ssid="ikeriri6"


print(pmk.hex())

4

5

 Station (iPhone13) and AP (ASUS) share this information, but never send it to the network.


Let's start dissecting 4way handshake

SharkFest'22 US

Kansas City, MO July 9-14

#sf22us

[PMK: 31bb75a609a424aac01e9929b39458e87ea45b0f30204ff5642bf3067a6fd31f]

 Exchange and Confirm PTK in Messages 1,2 Exchange and Confirm GTK in Messages 3,4

14

Packet #5 Key(Message 1 of 4) AP->STA

4 0.005	802.11a	(OFDM)	56	-33	dBm	-93	dBm		6	Fram
5 0.008	802.11a	(OFDM)	56	-33	dBm	-93	dBm		6	Fram
6 0.010	802.11a	(OFDM)	56	-41	dBm	-93	dBm		6	Fram
7 0.011	802.11a	(OFDM)	56	-33	dBm	-93	dBm		6	Fram
- 8 0.013	802.11a	(OFDM)	56	-41	dBm	-91	dBm		6	Fram
		···->						 	-	-

> Frame 5: 165 bytes on wire (1320 bits), 165 bytes captured (1320 bits) on interface > Radiotap Header v0, Length 32

- 202 11 medie information
- > 802.11 radio information
- > IEEE 802.11 QoS Data, Flags:F.
- > Logical-Link Control
- 802.1X Authentication

Version: 802.1X-2004 (2)

Type: Key (3)

Length: 95

Key Descriptor Type: EAPOL RSN Key (2)

[Message number: 1]

> Key Information: 0x008a

Key Length: 16

Replay Counter: 1

WPA Key Nonce: 812e47f04e25fe494c7d44b2f7b016e0ebe3f24865fd234f4998a8f5d8d68bc0

WPA Key RSC: 000000000000000

WPA Key ID: 000000000000000

WPA Key Data Length: 0

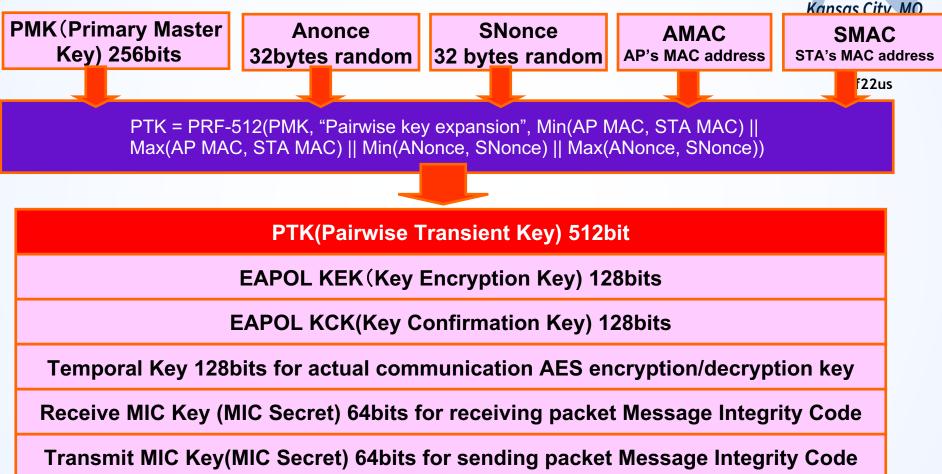
Shark**Fest** '22 US Kansas City, MO July 9-14

#sf22us

AP creates and sends Nonce (ANonce),32bytes random value.

Message1 packet

 also contains AP's
 MAC Address.


PTK creation from STA(iPhone) side (1of4)

 STA starts to create PTK (Pairwise Transient Key) after STA received EAPOL Message 10f4 (Packet*5)*

Shark**Fest** 22 US Kansas City, MO

- STA creates its own Nonce(Snonce), 32bytes random
- PTK is created from ANonce, Snonce, AP MAC address and STA mac address PTK = PRF-512(PMK, "Pairwise key expansion", Min(AP MAC, STA MAC) || Max(AP MAC, STA MAC) || Min(ANonce, SNonce) || Max(ANonce, SNonce)) *PRF(Pseudo-Random Function) is SHA1 hash value from input paratmeter, PMK, "Pairwise key expansion" and Min(AP MAC, STA MAC) || Max(AP MAC, STA MAC) || Min(ANonce, SNonce) || Max(ANonce, SNonce))

¹⁶ PTK is a big key ring consists of many WPA2/WPA3 keysarkFest'22US

Packet #6 Key(Message 2 of 4) STA->AP

	•			•
	50			o rion
4 0.005 802.11a (OFDM)	56	-33 dBm		6 Fram
5 0.008 802.11a (OFDM)	56	-33 dBm	-93 dBm	6 Fram
6 0.010… 802.11a (OFDM)	56	-41 dBm		6 Fran
7 0.011… 802.11a (OFDM)	56	-33 dBm	-93 dBm	6 Fran
– 80.013… 802.11a (OFDM)	56	-41 dBm	-91 dBm	6 Frai
Frame 6: 187 bytes on wire (1496 b	its), 187	bytes captur	ed (1496 bits)	on interfac
Radiotap Header v0, Length 32				
802.11 radio information				
IEEE 802.11 QoS Data, Flags:	T			
> Logical-Link Control				
802.1X Authentication				
Version: 802.1X-2004 (2)				
Type: Key (3)				
Length: 117				
Key Descriptor Type: EAPOL RSN K	Kay (2)			
[Message number: 2]	(2)			
> Key Information: 0x010a				
Key Length: 16				
Replay Counter: 1				
WPA Key Nonce: fcf94398b971a1f20	0572495509	733ff0008c93b	142e86c9348ce2	23f3c287ff8b
Key IV: 000000000000000000000000000	0000000000			
WPA Key RSC: 0000000000000000				
WPA Key TD· αααααααααααααααα				
WPA Key MIC: d5aa6adf088791d7cd	37b8866f8a	0930		
WPA Key Data Length: 22				
NDA Kay Data 2010 000000000000000000000000000000000	10000050	40100000E 01	0.00	

> WPA Key Data: 30140100000fac040100000fac040100000fac028c00

17

Shark**Fest** '22 US Kansas City, MO July 9-14

- STA creates an#d^{22us} sends Nonce (SNonce),32bytes random value.
- STA calculate and add WPA Key MIC
- Message2 packet

 Also contains STA's
 MAC Address

STA created SNonce and Add MIC Key Data

- Receiving 1of4 Messages, STA creates PTK
- STA sets SNonce, 32bytes random value

Shark**Fest** '22 US Kansas City, MO July 9-14

 STA also adds 16 bytes WPA Key MIC field, calculated SHA1 HMAC from all of the 802.1x fields

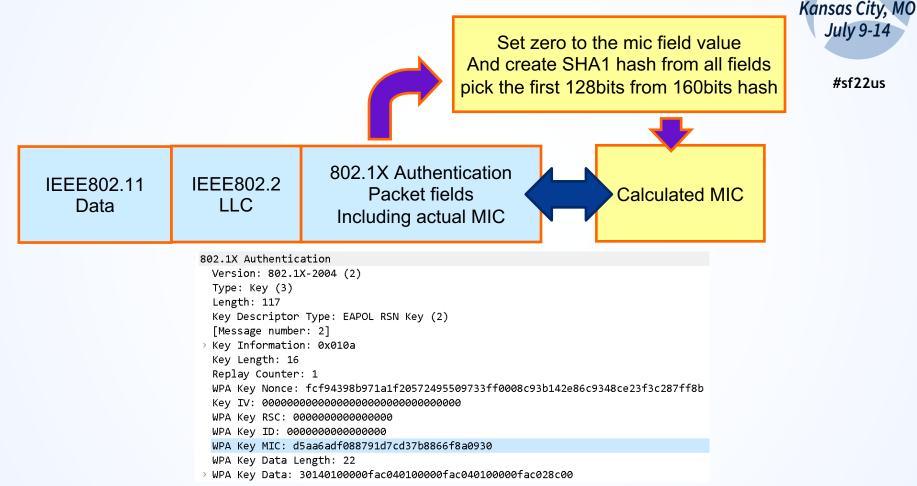
WPA Key MIC: d5aa6adf088791d7cd37b8866f8a0930

 WPA Key MIC means the confirmation that created PTK is the same with STA and AP (Receiving 2of4 Message, AP also creates PTK and check the WPA Key MIC is correct)

18

PTK creation from AP(ASUS) side

• AP starts to create PTK (Pairwise Transcient Key) 9-14 after EAPOL Message 20f4 (Packet 6) #sf22us


Shark**Fest**'22 US

- PTK is created from ANonce, Snonce, AP MAC address and STA mac address
 PTK = PRF-512(PMK, "Pairwise key expansion", Min(AP MAC, STA MAC) || Max(AP MAC, STA MAC) || Min(ANonce, SNonce) || Max(ANonce, SNonce))
- AP checks the WPA Key MIC field to calculate SHA1HMAC from all of the 802.1x fields with the MIC field set to all zeros.
- If the calculated MIC is the same with the Message2of4, STA and AP shared the same PTK.

20

Check Actual MIC with Calculated MIC

Shark**Fest**'22 US

If calculated MIC is not the same with Shark Fest 22 US WPA Key MIC value of Message 20f4 (Packet6), July 9-14 It usually means passphrase is not the same. #sf22us

 Open notmatchmic.pcapng and set display filter as "wlan.addr_resolved contains Nintendo"

	notmatchmic.pcapng				-	
File	Edit View Go Capture	e Analyze Statistics Telephony Wi	reless Tools Help			
	🔳 🖉 🕥 🚞 🛅 🛣 🎑	9, 🖛 🔿 錾 🗿 💆 📃 📃 0,	Q Q II			
A	pply a display filter … <ctrl= .<="" td=""><td>َ> ◄ ٢</td><td>ーコン アソシエーション応答 WPA</td><td>鍵交換 PlanexAP CiscoAP NetGear/</td><td>AP RTSかCTS DeauthかD</td><td>)isassoc デー</td></ctrl=>	َ> ◄ ٢	ーコン アソシエーション応答 WPA	鍵交換 PlanexAP CiscoAP NetGear/	AP RTSかCTS DeauthかD)isassoc デー
No.	Time	Signal (dBm) Source	Destination	Type/Subtype	Data rate (Mb/s)	Protoc
	10.000000	-51 dBm Modacom_a8:5	5:d8 Nintendo_35	:63:78 Probe Response		802
	20.000311	-62 dBm	Modacom_a8:	55:d Acknowledgement		802
	30.010279	-50 dBm Modacom_a8:5	5:d8 Broadcast	Beacon frame		802
	40.084443	-53 dBm Modacom_a8:5	5:d8 Nintendo_35	:63:78 Probe Response		802

 This trace tested passphrase mismatch betweenses City, MO Modacom AP and Nintendo STA.

22

 We can find the iteration of Message1, Message2^{f22us} because AP's calculated MIC is not the same as Message 2 WPA Key MIC.

Modacom_a8:55:d8 Nintendo_35:63:78 QoS D	Data EAPOL	169 Key (Message	1 of 4)
Nintendo_35:63:78 Modacom_a8:55:d8 QoS D	Data EAPOL	191 Key (Message	2 of 4)
Modacom_a8:55:d8 Nintendo_35:63:78 QoS D	Data EAPOL	169 Key (Message	1 of 4)
Nintendo_35:63:78 Modacom_a8:55:d8 QoS D	Data EAPOL	191 Key (Message	2 of 4)
Modacom_a8:55:d8 Nintendo_35:63:78 QoS D	Data EAPOL	169 Key (Message	1 of 4)
Nintendo_35:63:78 Modacom_a8:55:d8 QoS D	Data EAPOL	191 Key (Message	2 of 4)
Modacom_a8:55:d8 Nintendo_35:63:78 QoS D	Data EAPOL	169 Key (Message	1 of 4)
Nintendo_35:63:78 Modacom_a8:55:d8 QoS D	Data EAPOL	191 Key (Message	2 of 4)
Modacom_a8:55:d8 Nintendo_35:63:78 Disas	sso 802.11	62 Disassociate,	, SN=2, FN=0

PTK exchange Demonstration

I referred and created the WPA2 implementation
 Python code from Nicholas smith
 #sf22us

 https://nicholastsmith.wordpress.com/2016/11/15/

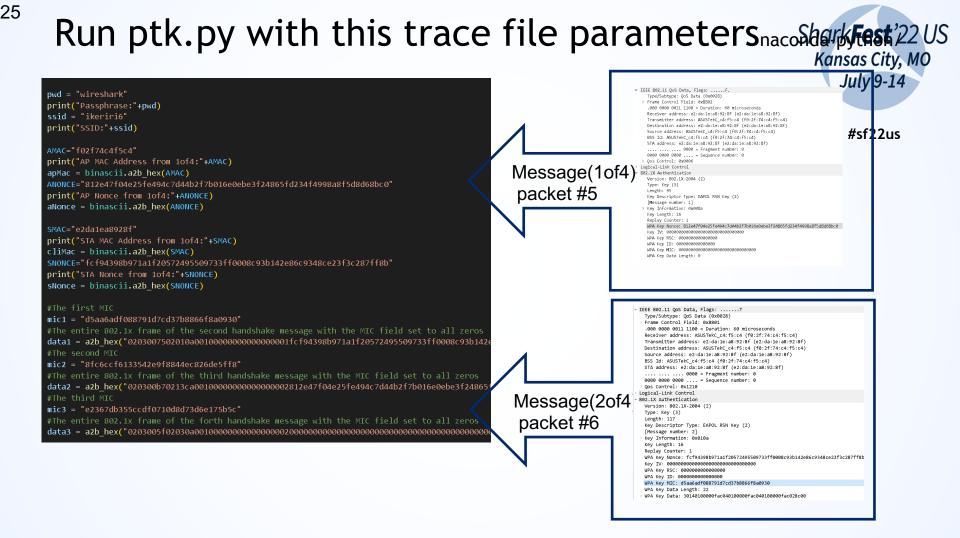
 wpa2-key-derivation-with-anaconda-python/

Fest 22 US

Kansas City, MO

- It is not perfect, not actual, but a Pseudo concept, I set parameters from the trace file.
 wpa2psk-ssid-ikeriri6-pass-wireshark.pcapng
- Open ptk.py using VSCode.

Open ptk.py (I referred and created the code from Nicholas smith)



https://nicholastsmith.wordpress.com/2016/11/15/wpa2-key-derivation-with-anaconda-python/

🖹 ptk.	.py >	
	# ikeriri	referred and changed the code from nicholastsmith
	# https://	nicholastsmith.wordpress.com/2016/11/15/wpa2-key-derivation-
	import hma	ic
	from binas	cii import a2b_hex, b2a_hex
	from hashl	ib import pbkdf2_hmac, sha1, md5
	import bin	hascii
	#Pseudo-ra	ndom function for generation of
10	_ #the pairw	uise transient key (PTK)
11	#key:	The PMK
12	#A:	b'Pairwise key expansion'
13	#B:	The apMac, cliMac, aNonce, and sNonce concatenated
14		like mac1 mac2 nonce1 nonce2
15		such that mac1 < mac2 and nonce1 < nonce2
	<pre>#return:</pre>	The ptk
17	defPRF(ke	ey, A, B):
18	#Numbe	er of bytes in the PTK
19	nByte	= 64
20	i = 0	
21	R = b'	
22		iteration produces 160-bit value and 512 bits are required
23		i <= ((nByte * 8 + 159) / 160)):
24		uacsha1 = hmac.new(key, A + chr(0x00).encode() + B + chr(i).e
25		= R + hmacsha1.digest()
26		+= 1
27	return	R[0:nByte]

24

			#sf22us
9	#Make param	eters for the generation of the PTK	
0	#aNonce:	The aNonce from the 4-way handshake	
	#sNonce:	The sNonce from the 4-way handshake	
2	≇ apMac:	The MAC address of the access point	
	<pre>#cliMac:</pre>	The MAC address of the client	
	<pre>#return:</pre>	(A, B) where A and B are parameters	
5		for the generation of the PTK	
6	def MakeAB(aNonce, sNonce, apMac, cliMac):	
	A = b'' P	airwise key expansion"	
8	B = min	<pre>(apMac, cliMac) + max(apMac, cliMac) + min(aNonce, sNonce)</pre>	
	return	(A, B)	
0			
	#Compute th	e 1st message integrity check for a WPA 4-way handshake 👘	
2	#pwd:	The password to test	
	#ssid:	The ssid of the AP	
	#A:	b'Pairwise key expansion'	
5	#B:	The apMac, cliMac, aNonce, and sNonce concatenated	
6		like mac1 mac2 nonce1 nonce2	
		such that mac1 < mac2 and nonce1 < nonce2	
8	#data:	A list of 802.1x frames with the MIC field zeroed	
9	<pre>#return:</pre>	(x, y, z) where x is the mic, y is the PTK, and z is the	Р
0		(pwd, ssid, A, B, data, wpa = False):	
		the pairwise master key using 4096 iterations of hmac-sha	1
2		erate a 32 byte value	
		bkdf2_hmac('sha1', pwd.encode('ascii'),	
4		he pairwise transient key (PTK)	
5		RF(pmk, A, B)	
6		es md5 to compute the MIC while WPA2 uses sha1	
		c = md5 if wpa else sha1	
8		the MICs using HMAC-SHA1 of data and return all computed	M
9		<pre>[hmac.new(ptk[0:16], i, hmacFunc).digest() for i in data]</pre>	
a	notupp	(mice atle ande)	-

26

ptk.py outputs PMK, PTK, TK and MIC value

Shark**Fest**'22 US Kansas City, MO July 9-14

#sf22us

mics,ptk,pmk=MakeMIC(pwd, ssid, A, B, [data1, data2, data3], wpa = False)

- print ("PMK: " + pmk.hex())
- print ("PTK: " + ptk.hex())
- kek=ptk[0:15]
- print ("KEK: " + kek.hex())
- kck=ptk 16:31
- print ("KCK: " + kck.hex())
- tk=ptk 32:48
- print ("TK: " + tk.hex())
- rmic=ptk 48:55
- print ("Receive MIC Secret: " + rmic.hex()) 107

A,B=MakeAB(aNonce, sNonce, apMac, cliMac)

- tmic=ptk 56:63]
- print ("Transmiit MIC Secret: " + tmic.hex()) 110
- 111mic1Str = mic1.upper()
- print("dactual mic:" + mic1Str)
- **#**Take the first 128-bits of the 160-bit SHA1 hash
- micStr = b2a hex(mics[0]).decode().upper()[:-8]
- print("calculated mic from Message2of4:" + micStr)
- print('MATCH' if micStr == mic1Str else 'MISMATCH')
- mic2Str = mic2.upper()
- print("actual mic:" + mic2Str) 119
- #Take the first 128-bits of the 160-bit SHA1 hash
- micStr = b2a hex(mics[1]).decode().upper()[:-8]
- print("calculated mic from Message3of4:" + micStr)
- print('MATCH' if micStr == mic2Str else 'MISMATCH') 123
- #Display the desired MIC3 and compare to target MIC3 124
- mic3Str = mic3.upper()
- print("packet mic:" + mic3Str)
- #Take the first 128-bits of the 160-bit SHA1 hash
- 128 micStr = b2a hex(mics[2]).decode().upper()[:-8]
- print("packet mic from Message4of4:" + micStr)
- print('MATCH' if micStr == mic3Str else 'MISMATCH') 130

PS C:\Users\TakeshitaMegumi\OneDrive - いけりりネットワークサービス株式会社\Sharkfest al/Microsoft/WindowsApps/python3.9.exe "c:/Users/TakeshitaMegumi/OneDrive - いけりり Passphrase:wireshark

SSID: ikeriri6 AP MAC Address from 1of4:f02f74c4f5c4

- AP Nonce from 1of4:812e47f04e25fe494c7d44b2f7b016e0ebe3f24865fd234f4998a8f5d8d68bc0
- STA MAC Address from 1of4:e2da1ea8928f STA Nonce from 10f4;fcf94398b971a1f20572495509733ff0008c93b142e86c9348ce23f3c287ff8b
- PMK: 31bb75a609a424aac01e9929b39458e87ea45b0f30204ff5642bf3067a6fd31f
- PTK: 46e515c2a3677ef693f93e8368517684728fe5b36aa9e9fa60e80007a18c05574c102fd43613c535
- KEK: 46e515c2a3677ef693f93e83685176
- KCK: 728fe5b36aa9e9fa60e80007a18c05
- TK: 4c102fd43613c535404d0777088a6503
- Receive MIC Secret: 7d9de4d644bb9a
- Transmiit MIC Secret: de1a23f2e9f17b
- dactual mic:D5AA6ADF088791D7CD37B8866F8A0930
- calculated mic from Message2of4:D5AA6ADF088791D7CD37B8866F8A0930 MATCH
- actual mic:8FC6CCF6133542E9F8844EC826DE5FF8
- calculated mic from Message3of4:8FC6CCF6133542E9F8844EC826DE5FF8 MATCH
- packet mic: E2367DB355CCDF0710D8D73D6E175B5C
- packet mic from Message4of4:E2367DB355CCDF0710D8D73D6E175B5C MATCH
- - PS C:\Users\TakeshitaMegumi\OneDrive いけりりネットワークサービス株式会社\Sharkfest

27

Check the MIC is correct

City, MO Passphrase:wireshark SSID:ikeriri6 /9-14 AP MAC Address from 1of4:f02f74c4f5c4 AP Nonce from 1of4:812e47f04e25fe494c7d44b2f7b016e0ebe3f24865fd234f4998a8f5d8d68bc0 STA MAC Address from 1of4:e2da1ea8928f STA Nonce from 10f4:fcf94398b971a1f20572495509733ff0008c93b142e86c9348ce23f3c287ff8b f22us PMK: 31bb75a609a424aac01e9929b39458e87ea45b0f30204ff5642bf3067a6fd31f PTK: 46e515c2a3677ef693f93e8368517684728fe5b36aa9e9fa60e80007a18c05574c102fd43613c535404d0777088a65037d9de4d644bb9a67de1a23f2e9f17b8e KEK: 46e515c2a3677ef693f93e83685176 KCK: 728fe5b36aa9e9fa60e80007a18c05 TK: 4c102fd43613c535404d0777088a6503 Receive MIC Secret: 7d9de4d644bb9a Transmiit MIC Secret: de1a23f2e9f17b dactual mic:D5AA6ADF088791D7CD37B8866F8A0930 calculated mic from Message2of4:D5AA6ADF088791D7CD37B8866F8A0930 MATCH actual mic:8FC6CCF6133542E9F8844EC826DE5FF8 calculated mic from Message3of4:8FC6CCF6133542E9F8844EC826DE5FF8 MATCH packet mic: E2367DB355CCDF0710D8D73D6E175B5C packet mic from Message4of4:E2367DB355CCDF0710D8D73D6E175B5C MATCH PS C:\Users\TakeshitaMegumi\OneDrive - いけりりネットワークサービス株式会社\Sharkfest\Sharkfest2022\03DissectingWPA3>

Shark**Fest**'22 US

• The calculated MIC value and packet are the same.

 AP and STA succeeded in sharing the same PTK (and GTK later) without sending key data into the network.

Check TK(Temporal Key)

 TK is used for actual encryption/decryption AES⁴ key for unicast data communication between AP and⁴ STA.

Shark**Fest** 22 US Kansas City, MO

 Compare the calculated TK from ptk.py with the TK field in CCMP parameters of QoS Data packet (for example, try packet #10) (WPA3-SAE also use this)

TK: 4c102fd43613c535404d0777088a6503

CCMP parameters
 CCMP Ext. Initialia BINGO!!
 00000000000
 Key Index: 0
 [TK: 4c102fd43613c535404d0777088a6503]
 [PMK: 31bb75a609a424aac01e9929b39458e87ea45b0f30204ff5642bf3067a6fd31f]

Packet #7 Key(Message 3 of 4) AP->STA

		•
40.005013	-33 dASUSTekC_c4:f5:c4 e2:da:1e:a8:92:8f	Association Response
50.008401	-33 dASUSTekC_c4:f5:c4 e2:da:1e:a8:92:8f	QoS Data
60.010452	-41 de2:da:1e:a8:92:8f ASUSTekC_c4:f5:c4	QoS Data
7 0.011950	-33 dASUSTekC_c4:f5:c4 e2:da:1e:a8:92:8f	QoS Data
L 80.013064	-41 de2:da:1e:a8:92:8f ASUSTekC_c4:f5:c4	QoS Data
90.072760	-41 d:: ff02::1:ff01:27fa	QoS Data
100.072892	-41 de2:da:1e:a8:92:8f ASUSTekC_c4:f5:c5	QoS Data

AP creates Norfe (Gnonce), random. > Frame 7: 253 bytes on wire (2024 bits), 253 bytes captured (2024 bits) on interface unknowr AP crates and sends GTK safely with KCK / KEK in securely. GTK is used for multicast/broadcast AP calculates and adds WPA Key MIC.

> Radiotap Header v0, Length 32 > 802.11 radio information > IEEE 802.11 QoS Data, Flags:F. > Logical-Link Control > 802.1X Authentication Version: 802.1X-2004 (2) Type: Key (3) Length: 183 Key Descriptor Type: EAPOL RSN Key (2)

[Message number: 3]

> Key Information: 0x13ca

Key Length: 16

29

Replay Counter: 2

WPA Key Nonce: 812e47f04e25fe494c7d44b2f7b016e0ebe3f24865fd234f4998a8f5d8d68bc0

WPA Key RSC: 000000000000000

WPA Key ID: 000000000000000

WPA Key MIC: 8fc6ccf6133542e9f8844ec826de5ff8

WPA Key Data Length: 88

> WPA Key Data: 8a6607c41f921c7035108bc8a60c1fa1b5a5ae7d0e191e1ce71fa11d8a1a65b302c4c345.

GTK creation at AP side

GTK is created from GMK, Gnonce(Group Nonce),
 AP's MAC address and Group Key Expansion

GTK 256bits for broadcast / multicast communication

Shark**Fest** 22 US Kansas City, MO

TK(Temporal Key) 128bits AES encryption/decryption key

Receive MIC Key (MIC Secret) 64bits for receiving packet Message Integrity Code

Transmit MIC Key(MIC Secret) 64bits for sending packet Message Integrity Code

 GTK is used for broadcast and multicast, and GTK is the same key between all STA and AP, so GTK will be changed periodically (using a 2-way handshake)

Check the GTK from Message 3of4 SharkFest'22 US

31

 Open WPA Key Data in 802.1X Authentication header of Message 3of4 (Packet #7) #sf22us

Kansas City, MO

Open "Tag: Vendor Specific: leee 802.11: RSN GTK"

WPA Key Data: 8a6607c41f921c7035108bc8a60c1fa1b5a5ae7d0e191e1ce71fa11d8a1a65b302c4c345... > Tag: RSN Information ~ Tag: Vendor Specific: Ieee 802.11: RSN GTK Tag Number: Vendor Specific (221) Tag length: 22 OUI: 00:0f:ac (Ieee 802.11) Vendor Specific OUI Type: 101 = KeyID: 1 0... = Tx: 00000 0... = Reserved: 0x00 Reserved: 0 GTK is here GTK: eeda95a1155a28f86c030d000c1fdd9a > Tag: Vendor Specific: Ieee 802.11: RSN IGTK WPA Key Data Padding: dd000000 [KCK: 46e515c2a3677ef693f93e8368517684] [KEK: 728fe5b36aa9e9fa60e80007a18c0557]

Compare KCK and KEK

32

 KCK(Key Confirmation Key) and KEK(Key Encryption Key) are used for secure key distribution.

Shark**Fest** 22 US Kansas City, MO

 Confirm Wireshark calculated KCK, KEK is the same with ptk.py generated KCK, KEK

GTK: eeda95a1155a28f86c030d000c1fdd9a

> Tag: Vendor Specific: Ieee 802.11: RSN IGTK WPA Key Data Padding: dd000000 [KCK: 46e515c2a3677ef693f93e8368517684] [KEK: 728fe5b36aa9e9fa60e80007a18c0557]

KEK: 46e515c2a3677ef693f93e8368517684 KCK: 728fe5b36aa9e9fa60e80007a18c0557

It means GTK sends/receives securely

Packet #7 Key(Message 4of4) STA->AP

P	u. Inne	orginal (upini oburce	Destination	i yper o uprype
	40.005013	-33 d ASUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	Association Respon
	50.008401	-33 d ASUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	QoS Data
	60.010452	-41 de2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	QoS Data
	70.011950	-33 d ASUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	QoS Data
	L 80.013064	-41 de2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	QoS Data
	90.072760	-41 d::	ff02::1:ff01:27fa	QoS Data
	100.072892	-41 de2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c5	QoS Data
	110.073031	-41 d0.0.0	255.255.255.255	QoS Data
	120.073376	-41 d fe80::1c42:c607:	.ff02::2	QoS Data
	130.073578	-33 d::	ff02::1:ff01:27fa	Data

> Frame 8: 165 bytes on wire (1320 bits), 165 bytes captured (1320 bits) on interface

- > Radiotap Header v0, Length 32
- > 802.11 radio information
- > IEEE 802.11 QoS Data, Flags:T
- > Logical-Link Control

> 802.1X Authentication

Version: 802.1X-2004 (2)

Туре: Кеу (3)

Length: 95

33

Key Descriptor Type: EAPOL RSN Key (2)

[Message number: 4]

> Key Information: 0x030a

Key Length: 16

Replay Counter: 2

- WPA Key RSC: 00000000000000

WPA Key TD. ААААААААААААААА

WPA Key MIC: e2367db355ccdf0710d8d73d6e175b5c

WPA Key Data Length: 0

- STA received affide installed GTK in Message 3of4 (#6)
- STA adds WPA Key MIC for confirmation

 AP receives Message 4of4 and confirms packet MIC with calculated MIC.

34

Conclusion: 4 way handshake in WPA2/WPA3 Shark Fest'22 US

WPA2 is good, but...

- It has been over ten years since WPA2 was born.
- We can use a dictionary attack if we capture a complete 4-way handshake between AP and STA.
- Smartphones and tablets are positive to roam, so faked Deauthentication and Disassociation frames can lead to tons of new 4-way handshake packets.
- Some new attack method comes, for example, KRACKS blocks the original Message3of4 from AP and tries many GTK patterns to assure keys.

Deauth attack

- Shark**Fest**²²US Kansas City, MO July 9-14 Disassociation frames
- faked Deauthentication and Disassociation frames can lead to tons of fresh 4-way handshake packet airreplay-ng --deauth wlan0mon
- Use dictionary attack if we capture just a set of a complete 4-way handshake between AP and STA.
- Open deauthattack.pcap and set Display filter as "wlan.fc.type_subtype==12 or eapol"
- You can find many 4-way handshake packets of Stations (Sony_xx:yy:zz) after Deauthentication.

Open deauthattack.pcap

37

	/lan.fc.type_subtype==12 or ea	apol	· · 図 = マ + ビーコン アン	シエーション応答 WPA鍵3	交換 PlanexAP	CiscoAP NetGearAP RTSかCTS	DeauthかDisassoc
No.	Time	Signal (dBm) Source	Destination	Type/Subtype D	lata Protocol	Length Info	
	442 358 . 904	-58 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	46 Deauthenticatio	n, SN=2192
	442358.912	-58 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=219:
	442358.914	-57 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2191
	442 358 . 921	-58 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2191
	443 359 . 050	-60 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2191
	443359.109	-62 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2191
	443 359.113	-62 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2193
	443359.120	-62 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2193
	443 359 . 124	-62 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2193
	443359.149	-63 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2193
	443 359 . 163	-62 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2193
	443 359 . 174	-61 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	n, SN=2193
	443 359 . 177	-60 dBm PlanexCo_e3:c	2:79 Sony_50:73:db	Deauthe	1802.11	50 Deauthenticatio	<mark>n, SN=219</mark> 3
	252 262.058	-58 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Deauthe	1802.11	50 Deauthenticatio	n, SN=2177
	252 262.374	-60 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	177 Key (Message 1	of 4)
	252 262.450	-60 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	211 Key (Message 3	of 4)
	313 293.295	-63 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	177 Key (Message 1	of 4)
	313 293.299	-63 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	177 Key (Message 1	of 4)
	313 293.571	-64 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	177 Key (Message 1	of 4)
	313 293.580	-64 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	177 Key (Message 1	of 4)
	313 293.587	-63 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	177 Key (Message 1	of 4)
	313 293.592	-64 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	177 Key (Message 1	of 4)
	314 293.644	-62 dBm PlanexCo_e3:c	2:79 Sony_53:d6:0a	Data	1 EAPOL	89 Key[Malformed P	acket]
	314 293.685	-61 dBm PlanexCo e3:c	2:79 Sony 53:d6:0a	Data	1 EAPOL	177 Key (Message 1	of 4)

Shark**Fest** '22 US Kansas City, MO July 9-14

#sf22us

 faked Deauthentication frames (source address is faked AP) lead to tons of fresh 4-way handshake

WPA3 Wi-Fi Protected Access

- WPA3 is the new security standard for wireless networks 9-14 https://www.wi-fi.org/download.php?file=/sites/default/files/private/WPA3_Specification_v3.0.pdf
- WPA3 personal mode (WPA3-SAE) uses SAE(Simultaneous⁴^{sf22us} Authentication of Equals), derived from Dragonfly Key Exchange(RFC7664), instead of open authentication. <u>https://www.rfc-editor.org/info/rfc7664</u>
- AP and STA exchange 4 packets (AP/STA Commit, AP/STA Confirm) and create PMK at the authentication phase, So PMK is different every time. This provides forward security, we cannot attack from an old 4-way handshake with the fresh PMK. (WPA2-PSK uses the same PMK) It means a dictionary attack is (almost) impossible!!

Compare wpa2psk-ssid-ikeriri6-pass-wireshark.pcapng est 22 US with wpa3psk-ssid-ikeriri6-pass-wireshark.pcapng Kansas City, MO July 9-14

WPA2

WPA3

O Both WPA2 and WPA3 use the same 4-way handshake mechanism to create and share PTK, GTK

No.	Time	Signal (dBm) Sc	ource	Destination	Type/Subtype	Data Protocol	Length Info
	10.000000	-39 dBm e	2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	Authentication	6802.11	97 Authentication, SN=833, FN=0, Flags=
	20.001283	-33 dBm A	SUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	Authentication	6802.11	62 Authentication, SN=0, FN=0, Flags=
	30.002746	-41 dBm e	2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	Association Request	6802.11	237 Association Request, SN=834, FN=0, Flags=,
	40.005013	-33 dBm A	SUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	Association Response	6802.11	318 Association Response, SN=1, FN=0, Flags=
	50.008401	-33 dBm A	SUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	QoS Data	6 EAPOL	165 Key (Message 1 of 4)
	60.010452	-41 dBm e	2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	QoS Data	6 EAPOL	187 Key (Message 2 of 4)
	70.011950	-33 dBm A	SUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	QoS Data	6 EAPOL	253 Key (Message 3 of 4)
	80.013064	-41 dBm e	2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	QoS Data	6 EAPOL	165 Key (Message 4 of 4)
	90.072760	-41 dBm :	:	ff02::1:ff01:27fa	QoS Data	ICMPv6	170 Neighbor Solicitation for fe80::1c42:c607:6801:27fa
	100.072892	-41 dBm e	2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c5	QoS Data	ARP	126 Who has 192.168.50.1? Tell 192.168.50.236
	110.073031	-41 dBm 0	.0.0.0	255.255.255.255	QoS Data	DHCP	426 DHCP Request - Transaction ID 0xac9e7500
	120.073376	-41 dBm f	e80::1c42:c607	ff02::2	QoS Data	ICMPv6	146 Router Solicitation
	130.073578	-33 dBm :	:	ff02::1:ff01:27fa	Data	6 ICMPv6	136 Neighbor Solicitation for fe80::1c42:c607:6801:27fa

39

No.	Time	Signal (dBm)	Source	Destination	Type/Subtype	Data Protocol	Length Info
	10.000000	-36 dBm	e2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	Authentication	6802.11	160 Authentication, SN=3841, FN=0, Flags=
	20.028660	-31 dBm	ASUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	Authentication	6802.11	160 Authentication, SN=0, FN=0, Flags=
	30.058370	-38 dBm	e2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	Authentication	6802.11	96 Authentication, SN=3842, FN=0, Flags=
	40.059667	-31 dBm	ASUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	Authentication	6802.11	96 Authentication, SN=1, FN=0, Flags=
	50.062471	-38 dBm	e2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	Association Request	6802.11	255 Association Request, SN=3843, FN=0, Flags=
	60.064576	-31 dBm	ASUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	Association Response	6802.11	292 Association Response, SN=2, FN=0, Flags=
	70.067697	-31 dBm	ASUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	QoS Data	6 EAPOL	187 Key (Message 1 of 4)
	80.070141	-38 dBm	e2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	QoS Data	6 EAPOL	205 Key (Message 2 of 4)
	90.071860	-31 dBm	ASUSTekC_c4:f5:c4	e2:da:1e:a8:92:8f	QoS Data	6 EAPOL	253 Key (Message 3 of 4)
	100.073031	-38 dBm	e2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	QoS Data	6 EAPOL	165 Key (Message 4 of 4)
	110.075096	-40 dBm	e2:da:1e:a8:92:8f	ASUSTekC_c4:f5:c4	QoS Null function (802.11	74 QoS Null function (No data), SN=3844, FN=0
	120.421081	-40 dBm	e2:da:1e:a8:92:8f	IPv6mcast_ff:01	QoS Data	802.11	170 QoS Data, SN=0, FN=0, Flags=opT
	130.421085	-40 dBm	e2:da:1e:a8:92:8f	Broadcast	OoS Data	802.11	426 OoS Data. SN=1. FN=0. Flags=opT

40

Difference between WPA2 and WPA3 Shark Fest '22 US Kansas City, MO

Explanation	WPA2 Personal WPA2-PSK	WPA3 Personal WPA3-SAE			
PTK, GTK exchange	Both WPA2 and WPA3 use 4 way handshake				
Passphrase length	From 8 to 63 characters	From 8 to 128 characters			
Temporal Key (encryption key)	AES(128bits)	AES(128bits)			
Authentication method (PMK creation)	Open System/Shared key authentication PSK+SSID->PMK	SAE (Simultaneous Authentication of Equals)			
Encryption of Management frame	Not nessary	PMF(Protected Management Frames) (Optionally)			
Brute force prevention	Not nessary	Lock out a device after a number of unsuccessful attempts (Optionally)			

https://www.wi-fi.org/download.php?file=/sites/default/files/private/WPA3_Specification_v3.0.pdf

41

> Frame 2: 62 bytes on wire (496 bits), 62 byte: > Frame 1: 97 bytes on wire (776 bits), 97 byte > Radiotap Header v0, Length 32 > Radiotap Header v0, Length 32 > 802.11 radio information > 802.11 radio information > IEEE 802.11 Authentication, Flags: > IEEE 802.11 Authentication, Flags: ✓ IEEE 802.11 Wireless Management ✓ IEEE 802.11 Wireless Management Fixed parameters (6 bytes) Fixed parameters (6 bytes) Authentication Algorithm: Open System (0) Authentication Algorithm: Open System (0) Authentication SEQ: 0x0002 Authentication SEQ: 0x0001 Status code: Successful (0x0000) Status code: Successful (0x0000) > Tagged parameters (35 bytes)

 WPA2 Open System Authentication checks the match of SSID name (ikeriri6) Open wpa3 trace file and set display filter asharkFest'22 US "wlan.fc.type_subtype == 0x000b"

#sf22us

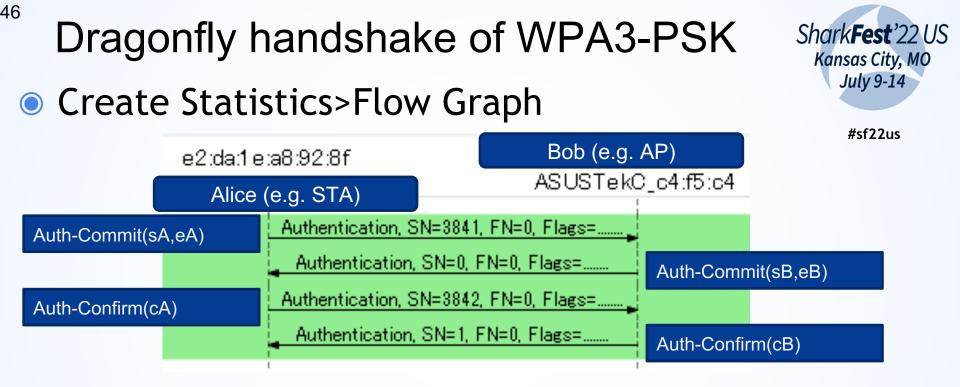
- Extract IEEE802.11 Wireless Management
- There are 4 Authentication packets with SAE Message type as follows STA Commit(1), AP Commit(1), STA Confirm(2), AP Confirm(2)
 - ✓ IEEE 802.11 Wireless Management

Fixed parameters (104 bytes) Authentication Algorithm: Simultaneous Authentication of Equals (SAE) (3) Authentication SEQ: 0x0001 Status code: Successful (0x0000) SAE Message Type: Commit (1) Group Id: 256-bit random ECP group (19) Scalar: c67801ac5941d1e0fad412b255567e53c885a0d12a22439a3e021c7d633f37e7 Finite Field Element: f4b7c34e9f0d5444381e1dde353e54dcc838435b372a3933b7cc(Understand Dragonfly key exchange with simple example

43

Oragonfly use Elliptic-Curve Cryptography(ECC)^{sas City, MO} ECC is a difficult mathematical theory, so think this in programming words easily.

Shark**Fest**'22 US


• The finite field is a mathematical term, in other words, the calculatable mod value collection. if we set mod value p=11(p:prime field GF(p))and the mod collection is $\{0, 1, 2, \dots, 9, 10\}$ we can calculate the mod collection, for example 3 * 5 = 15 is a element of the mod collection 4 $3*5=15\equiv4 \pmod{11}$. We use this for Elliptic-Curve Discrete Logarithm Problem (seems difficult...)

Understand Dragonfly key exchange with simple example rkFest 22 US

- We can translate Elliptic-Curve Discrete Logarithm Problem in a computer program like below, #sf22us int a=2,n=5,p=11, b=a^n mod p (^:exponentiation) we can calculate b easily from a,n,p b=2*2*2*2*2 mod 11=32 mod 11 =10
- So how do we find n (Logarithm) from a,b and p, we need to test incrementally, n=1, n=2, n=3, ... if the parameters are such a vast number, finding Logarithm n is almost impossible in today's PC
- ECC use this ECDLP for encryption

Understand Dragonfly key exchange with simple example rkFest '22 US

- We can translate the Elliptic-Curve Discrete Logarithm Problem in a computer program like#sf22us int a=2,n=5,p=11, b=a^n mod p (^:exponentiation) we can calculate b easily from a,n,p b=2*2*2*2*2 mod 11=32 mod 11 =10
- So how do we find n (Logarithm) from a,b and p, we need to test incrementally, n=1, n=2, n=3, ... if the parameters are such a vast number, finding Logarithm n is almost impossible to calculate.
 ECC use this ECDLP for encryption.

 Both AP and STA can initiate the handshake, send Auth-Commit and Auth-Confirm each other with scholar and (finite field) element value.

- ✓ IEEE 802.11 Wireless Management
 - Fixed parameters (104 bytes) Authentication Algorithm: Simultaneous Authentication of Equals (SAE) (3) Authentication SEO: 0x0001 Status code: Successful (0x0000)
 - SAE Message Type: Commit (1)
 - Group Id: 256-bit random ECP group (19)
 - Scalar: c67801ac5941d1e0fad412b255567e53c885a0d12a22439a3e021c7d633f37e7 Finite Field Element: f4b7c34e9f0d5444381e1dde353e54dcc838435b372a3933b7cc(
- ✓ IEEE 802.11 Wireless Management
 - Fixed parameters (104 bytes) Authentication Algorithm: Simultaneous Authentication of Equals (SAE) (3) Authentication SEQ: 0x0001 Status code: Successful (0x0000) SAE Message Type: Commit (1) Group Id: 256-bit random ECP group (19) Scalar: 3fed4910393e5fa8fa5ac12ab8fa9bdfcf8094ded96acfa887620f801c0ee564 Finite Field Element: 94a0809ac7b9759a54dc8a9e408e7566f053d79673f2f5a650ed
- ✓ IEEE 802.11 Wireless Management Fixed parameters (40 bytes)
 - Authentication Algorithm: Simultaneous Authentication of Equals (SAE) (3) Authentication SEQ: 0x0002 Status code: Successful (0x0000) SAE Message Type: Confirm (2) Send-Confirm: 1 Confirm: e05e00747ffce2d04a55d7d7d32296c5b8ffa07e5777d2dfa3f7a8e74fce2343
- ✓ IEEE 802.11 Wireless Management
- Fixed parameters (40 bytes)
 - Authentication Algorithm: Simultaneous Authentication of Equals (SAE) (3) Authentication SEQ: 0x0002 Status code: Successful (0x0000) SAE Message Type: Confirm (2) Send-Confirm: 0
 - Confirm: 6dc3f845c7772c6fa7ec01b95802b850ceb840e9dd13019c6515c3311c05cc4f

- SharkFest'22 US SAE handshake has
 - 2 Auth-Commit and
- 2 Auth-Confirm message^{2us}

Kansas City, MO

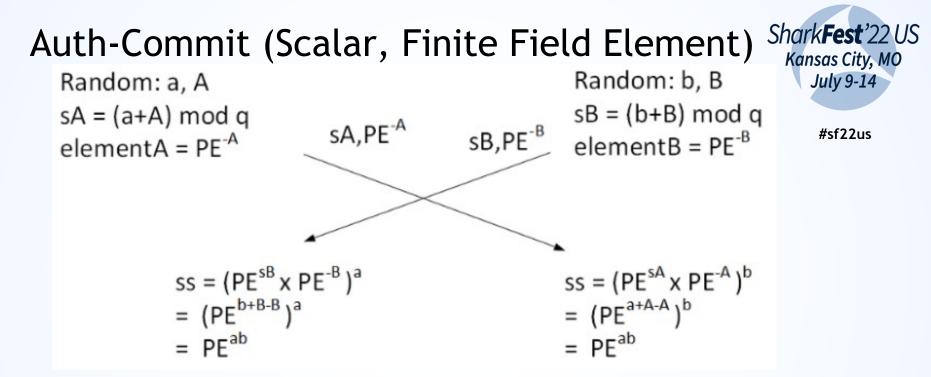
July 9-14

- Auth-Commit has Scalar(sA,sB) and Finite Field Element (eA,eB)
- Auth-Confirm has a Confirm value
- They create and share PMK during these 4 packets

#1:Auth-Commit from Alice(STA)

48

- V IEEE 802.11 Wireless Management
 V Fixed parameters (104 bytes)
 Authentication Algorithm: Simultaneous Authentication of Equals (SAE) (3)
 Authentication SEQ: 0x0001
 Status code: Successful (0x0000)
 SAE Message Type: Commit (1)
 Group Id: 256-bit random ECP group (19)
 Scalar: c67801ac5941d1e0fad412b255567e53c885a0d12a22439a3e021c7d633f37e7
 Finite Field Element: f4b7c34e9f0d5444381e1dde353e54dcc838435b372a3933b7cc(
- Alice(STA) picks random rA and mA and calculates sA=(rA+mA) mod q eA=-mA • GF(p) (• means inner products of vector)
- Then send Auth-Commit with sA (256bits Scalar) and GF(p) (512bits Finite Field Element)


#2:Auth-Commit from Bob(AP) at same time shark Fest'22 US

49

- V IEEE 802.11 Wireless Management
 V Fixed parameters (104 bytes)
 Authentication Algorithm: Simultaneous Authentication of Equals (SAE) (3)
 Authentication SEQ: 0x0001
 Status code: Successful (0x0000)
 SAE Message Type: Commit (1)
 Group Id: 256-bit random ECP group (19)
 Scalar: 3fed4910393e5fa8fa5ac12ab8fa9bdfcf8094ded96acfa887620f801c0ee564
 Finite Field Element: 94a0809ac7b9759a54dc8a9e408e7566f053d79673f2f5a650ed
- Bob(AP) picks random rB and mB and calculates sB=(rB+mB) mod q

eB=-mB • GF(p) (• means inner products of vector)

 Then send Auth-Commit with sB (256bits Scalar) and GF(p) (512bits Finite Field Element)

 Each Alice(STA) and Bob(AP) calculate their own and the other side Scalar and Finite field element to create and share PE(Password Equivalent) value.

3.2.1. Hunting and Pecking with ECC

Each Alice(STA) and Bob(AP) determine random
 values and GF(p) Finite Field Element, but How?^{22us}

rk**Fest** 22 US

Kansas City, MO

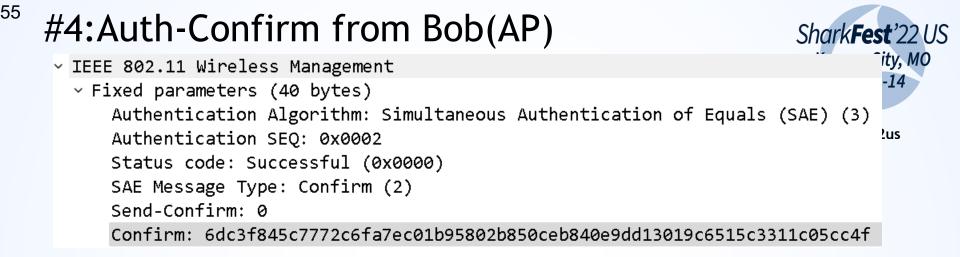
- RFC7664 Dragonfly key exchange defines a "Hunting and Pecking" algorithm to determine PE(Password Equivalent), try to find the point in the Elliptic Curve from Alice(STA) and Bob(AP) MAC addresses. https://www.rfc-editor.org/info/rfc7664
- We need over 40 times iterations of hunting and pecking loop against side-channel attack. (first implementation of Dragonfly)

3.2.1. Hunting and Pecking with ECC

- Shark**Fest**'22 US Kansas City, MO July 9-14
- We calculate the base value, the hash from the counter, mac addresses of Alice and Bob and the passphrase (counter=1)^{#sf22us} base = H(max(Alice,Bob) | min(Alice,Bob) | password | counter)
- We use KDF(key derivation function) to create bitstream temp value(length is prime number) and the seed
 n = len(p) + 64
 temp = KDF-n (base、 "Dragonfly Hunting and Pecking")
 seed = (temp mod (p 1)) + 1
- Start loop to find the valid point of Elliptic Curve, use seed as x-axis parameter to check x³ + a*x + b is a quadratic residue modulo p. if not, the counter increase, create new seed and set x-axis, current base value.

Hunting and Pecking with ECC Groups 3.2.1 RFC76 Aprk Fest 22 US

```
July 9-14
found = 0
     counter = 1
                                                                                          #sf22us
     n = len(p) + 64
     do {
      base = H(max(Alice,Bob) | min(Alice,Bob) | password |
counter)
      temp = KDF-n(base, "Dragonfly Hunting And Pecking")
      seed = (temp \mod (p - 1)) + 1
      if ( (seed^3 + a*seed + b) is a quadratic residue mod p)
      then
       if (found == 0)
                                                           } while ((found == 0) || (counter \leq k))
       then
                                                                v = sqrt(x^3 + ax + b)
         x = seed
                                                                if (lsb(y) == lsb(save))
         save = base
                                                                then
         found = 1
                                                                 PE = (x,y)
       fi
                                                                else
      fi
                                                                 PE = (x, p-y)
      counter = counter + 1
                                                                fi
```


#3:Auth-Confirm from Alice(STA)

54

Kansas City, MO
VIEEE 802.11 Wireless Management
VFixed parameters (40 bytes)
Authentication Algorithm: Simultaneous Authentication of Equals (SAE) (3)
Authentication SEQ: 0x0002
Status code: Successful (0x0000)
SAE Message Type: Confirm (2)
Send-Confirm: 1
Confirm: e05e00747ffce2d04a55d7d7d32296c5b8ffa07e5777d2dfa3f7a8e74fce2343

Shark**Fest**'22 US

- Alice(STA) verifies sB and eB, calculates
 K=rA (sB P+eB) (means inner products)
 tr=(sA,eA,sB,eB) (Alice and Bob know these values)
 cA=HMAC(Hash(K),tr)
- Then send Auth-Confirm with cA (256bits Confirm)

- Bob(AP) verifies sA and eA, calculates
 K=rB (sA P+eA) (means inner products)
 tr=(sB,eB,sA,eA) (Alice and Bob know these values)
 cB=HMAC(Hash(K),tr)
- Then send Auth-Confirm with cB (256bits Confirm)

Auth-Confirm (Confirm value)

Confirm-A = Hash(KCK | scalarA | a | elementA | elementB)

56

Confirm-B = Hash(KCK | scalarB | b, elementB | elementA)

#sf22us

- Each Alice(STA) and Bob(AP) can verify the packet's Confirm value with the calculated Confirm value
- K=rB (sA P+eA)
 K=rA (sB P+eB)
 tr=(sB,eB,sA,eA)
 cB=HMAC(Hash(K),tr)
 K=rA (sB P+eB)
 tr=(sA,eA,sB,eB)
 cA=HMAC(Hash(K),tr)
- If the calculated Confirm value is the same as the packet, we can share PE(Password Equivalent) value without sending passphrase information to each other.

PMK creation from PE value

57

Then Alice(STA) and Bob(AP) create PMK from PE(Password Equivalent) value.

#sf22us

- Random values make PE, so PMK is different every time during Dragonfly key exchange
- Let's check this, dragonfly_implementation.py is the sample Python code for the Dragonfly (SAE) handshake implementation by NikolaiT. https://github.com/NikolaiT/Dragonfly-SAE/blob/master/dragonfly_implementation.py
- Open dragonfly_implementation.py in VSCode

dragonfly implementation.py

from collections import namedtuple logger, setLevel(logging, INFO) fh.setLevel(logging.DEBUG) ch.setLevel(logging.DEBUG) formatter = logging.Formatter(%(asctime)s = %(name)s = %(levelname)s = %(message)s) ch.setFormatter(formatter) fh.setFormatter(formatter logger.addHandler(ch) logger.addHandler(fh)

return binary[0]

58

def legendre(a, p):

lef tonelli_shanks(n, p): assert legendre(n, p) --- 1, "not a square (mod p)" for i in range(1, m):

July 9-14 • There are many parameters, #sf22us such as ECC curve value, I also set the parameters of the passphrase, STA mac Address and AP mac Address.

SharkFest'22 US Kansas City, MO

• Note this code is not actual, just a demonstration example.

• Please run this code more than 2 times and check the outputs.

Check Commit Values

2022-07-03 23:34:02,692 - dragonfly - INFO - [STA] Sending scalar and element to the Peer! 2022-07-03 23:34:02,692 - dragonfly - INFO - [STA] Scalar=37665713968707636108463552758153804253866020869123773870082307673943289574929
2022-07-03 23:34:02,692 - dragonfly - INFO - [STA] Element=Point(x=53709856778176427809067616154587267236086462024002175424797334924059941340937, y=24560607 031508637145355645308281569136437199158698003538515219094487652065590)
2022-07-03 23:34:02,749 - dragonfly - INFO - [AP] Sending scalar and element to the Peer!
2022-07-03 23:34:02,750 - dragonfly - INFO - [AP] Scalar=18769519039188788754471066505026034067427887351975226134301023022936721879221
2022-07-03 23:34:02,750 - dragonfly - INFO - [AP] Element=Point(x=28143476516887803504064428630728579495169134189770038374073020424238475455413, y=245807196 77194949606219360213182272371291201029985376767539415701335918085913)
2022-07-03 23:34:02,750 - dragonfly - INFO - Computing shared secret
2022-07-03 23:34:02,858 - dragonfly - INFO - [STA] Shared Secret ss=69807381929808938225177021188985319505788035726401238610784021527476497801166 2022-07-03 23:34:02,968 - dragonfly - INFO - [AP] Shared Secret ss=69807381929808938225177021188985319505788035726401238610784021527476497801166
2022-07-03 23:34:02,968 - dragonfly - INFO - Confirm Exchange
2022-07-03 23:34:02,968 - dragonfly - INFO - [STA] Computed Token from Peer=13e297cb9a9dcea5d33be06237fa2878dadf4d994287bf0f1de343bcbac51cfd 2022-07-03 23:34:02,968 - dragonfly - INFO - [STA] Received Token from Peer=13e297cb9a9dcea5d33be06237fa2878dadf4d994287bf0f1de343bcbac51cfd 2022-07-03 23:34:02,968 - dragonfly - INFO - [STA] Pairwise Master Key(PMK)=e0c89767cd0bf2f6193b9439a7df0f7e37a853ff4e6e612b84b4967ca0849b9 2022-07-03 23:34:02,969 - dragonfly - INFO - [STA] Pairwise Master Key(PMK)=e0c89767cd0bf2f6193b9439a7df0f7e37a853ff4e6e612b84b4967ca0849b9 2022-07-03 23:34:02,969 - dragonfly - INFO - [AF] Computed Token from Peer=cf6f119f8094b0e395450c0466baacaca1824b8aolab2dd1b46ffb33bef4c8
2022-07-03 23:34:02,969 - dragonf1y - INFO - [AP] Received Token from Peer-cf6f119f89bab0e39b3450c0466baacacaa1824b8a0ab2dd1fbd6ffb33bef4c8 2022-07-03 23:34:02,969 - dragonf1y - INFO - [AP] Pairwise Master Key(PMK)=e0c89767cd0bf2f6193bb9439a7df0f7e37a853ff4e6e612b84b4967ca0849b9 PS C:\Users\TakeshitaMegumi\OneDrive - いけりりネットワークサービス株式会社\Sharkfest(Sharkfest2022\03DissectingUMAs)

#sf22us

- Please check Commit Value
 [STA]Scalar and [STA] Element(Finite Field Element)
 [AP]Scalar and [AP] Element (Finite Field Element)
- Please check Confirm Value
 [STA] Received Token from Peer
 [AP] Received Token from Peer

Check Confirm value

2022-07-03 23:34:02,968 - dragonfly - INF0 - Confirm Exchange...

2022-07-03 23:34:02,968 - dragonfly - INFO - [STA] Computed Token from Peer=13e297cb9a9dcea5d33be06237fa2878dadf4d994287bf0f1de	343bcbac51cfd
2022-07-03 23:34:02,968 - dragonfly - INFO - [STA] Received Token from Peer=13e297cb9a9dcea5d33be06237fa2878dadf4d994287bf0f1de	343bcbac51cfd
2022-07-03 23:34:02,968 - dragonfly - INFO - [STA] Pairwise Master Key(PMK)=e0c89767cd0bf2f6193bb9439a7df0f7e37a853ff4e6e612b84	b4967ca0849b9
2022-07-03 23:34:02,969 - dragonfly - INFO - [AP] Computed Token from Peer=cf6f119f89b4b0e39b3450c0466baacacaa1824b8a0ab2dd1fb4	
2022-07-03 23:34:02,969 - dragonfly - INFO - [AP] Received Token from Peer=cf6f119f89b4b0e39b3450c0466baacacaa1824b8a0ab2dd1fb4	
2022-07-03 23:34:02,969 - dragonfly - INFO - [AP] Pairwise Master Key(PMK)=e0c89767cd0bf2f6193bb9439a7df0f7e37a853ff4e6e612b84b	4967ca0849b9
PS C:\Users\TakeshitaMegumi\OneDrive - いけりりネットワークサービス株式会社\Sharkfest\Sharkfest2022\03DissectingWPA3>	

 Also, check Packet's Confirm Value is the same with calculated Confirm Value
 [STA] Computed Token from Peer is the same with
 [STA] Received Token from Peer
 [AP] Computed Token from Peer is the same with
 [AP] Received Token from Peer Check shared secret(PE), PMK

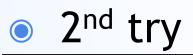
61

Look for each shared secret(Password Equivalent)¹⁴ value between Alice(STA) and Bob(AP).
#sf22us
[STA] Shared Secret and [AP] Shared Secret

Kansas City, MO

- Also, check PMK values, [STA] Pairwise Master Key(PMK) and [AP] Pairwise Master Key(PMK) Yes, we can share PE, PMK sending passphrase information to each other.
- Let's try over 2 times. You can find these values are different at every try.

PMK, shared key is defferent!!



● 1st try

62

	onfly - INF0 - [STA] Shared Secret ss=69807381929808938225177021188985319505788035726401238610784021527476497801166
2022-07-03 23:34:02,968 - drag	onfly - INF0 - [AP] Shared Secret ss=69807381929808938225177021188985319505788035726401238610784021527476497801166
2022-07-03 23:34:02,968 - drage	onfly - INFO - Confirm Exchange
	onfly - INF0 - [STA] Computed Token from Peer=13e297cb9a9dcea5d33be06237fa2878dadf4d994287bf0f1de343bcbac51cfd
	onfly - INF0 - [STA] Received Token from Peer=13e297cb9a9dcea5d33be06237fa2878dadf4d994287bf0f1de343bcbac51cfd
2022-07-03 23:34:02,968 - drage	onfly - INF0 - [STA] Pairwise Master Key(PMK)=e0c89767cd0bf2f6193bb9439a7df0f7e37a853ff4e6e612b84b4967ca0849b9
2022-07-03 23:34:02,969 - drage	onfly - INFO - [AP] Computed Token trom Peer=ct6t119t89b4b0e39b3450c0466baacacaa1824b8a0ab2dd1tb46ttb33bet4c8
2022-07-03 23:34:02,969 - drag	onfly - INFO - [AP] Received Token from Peer=cf6f119f89b4b0e39b3450c0466baacacaa1824b8a0ab2dd1fb46ffb33bef4c8
2022 07 02 22:24:02 0C0 dpage	r = 100 [AD] Daiming Master Kay(DWK) and $r = 100000000000000000000000000000000000$

2022-07-03 23:34:02,969 - dragonfly - INFO - [AP] Pairwise Master Key(PMK)=e0c89767cd0bf2f6193bb9439a7df0f7e37a853ff4e6e612b84b4967ca0849 PS C:\Users\TakeshitaMegumi\OneDrive - いけりりネットワークサービス株式会社\Sharktest\Sharktest2022\03DissectingWPA3> 📕

2022-07-03 23:51:33,556 - dragonfly - INFO - [STA] Shared Secret ss=1189115326235807803685727071259681376814918908581134690318478988316425160022 2022-07-03 23:51:33,665 - dragonfly - INFO - [AP] Shared Secret ss=1189115326235807803685727071259681376814918908581134690318478988316425160022

2022-07-03 23:51:33,666 - dragonfly - INF0 - Confirm Exchange...

	TA] Computed Token from Peer=ae98151668650840769ccabb0951d16ddbab736f4d6500272b0ec7c12d64ffbf
	TA] Received Token from Peer=ae98151668650840769ccabb0951d16ddbab736f4d6500272b0ec7c12d64ffbf
	TA] Pairwise Master Key(PMK)=d29fb108095ad3ec6b0cf4da267eaad8605c6b45ef7a5dbf5d5632689e4190f0
2022-07-03 23:51:33,667 - dragonfly - INFO - [AP	PJ Computed Token from Peer=e6d936182c952456c74cc26b05636965c53fd0f1d71ed4dfc9a2759f70fe31d7
	P] Received Token from Peer=e6d936182c952456c74cc26b05636965c53fd0f1d71ed4dfc9a2759f70fe31d7
2022-07-03 23:51:33,667 - dragonfly - INFO - [AP	P] Pairwise Master Key(PMK)=d29fb108095ad3ec6b0cf4da267eaad8605c6b45ef7a5dbf5d5632689e4190f0
PS C:\Users\TakeshitaMegumi\OneDrive - いけりりっ	イットワークサービス株式会社\Sharktest\Sharktest2022\03D1ssectingWPA3> 📋

Forward Security, PMF and lockout

We understand PMK is different every time in WPA3 it provides Forward Security.

Kansas Citv. MO

- We cannot use a offline dictionary attack
- Deauth attack is impossible with PMF (Protected Management Frames). (optionally)
- Wrong passphrase lockout function prevents brute force attack. (optionally)
- WPA3-SAE is (almost) impossible for cracking now.

- ⁶⁴ Vulnerabilities of WPA3 dragon blood
 - Downgrade WPA3-SAE to WPA2-PSK

- Shark**Fest** 22 US Kansas City, MO July 9-14
- DoS attack with over 70 connection requests #sf22us
 (Hunting and Pecking calculation DoS) may stop AP.
- Hunting and Pecking use 40 round time to find random values, so the old implementation may be weak with a side-channel attack.
- Chosen random value attack: set rB to zero.
- Enable Brute force using a faked mac address to avoid lockout, and so on...
- -> these vulnerabilities are (almost) fixed now!!

Appendix: WPA3-EAP

65

- WPA3 Enterprise mode is called WPA3-EAP
- WPA3-EAP use CSNA (Commercial National Sectifity Algorithm) 192bit encryption instead of AES.
- WPA3 needs a RADIUS (802.1x authentication) server We can use TLS, LEAP, PEAP and other authentication methods, the authentication server provides each connection's PMK.
- WPA3-EAP is the best choice if your network has many users and APs. (if your company has a budget)

USE WIRESHARK Shark Fest'22 US July 9-14 Thank you for watching

Please complete app-based survey

trace files and python codes are here:

https://www.ikeriri.ne.jp/sharkfest/03DissectingWPA3.zip

ikeriri network service
http://www.ikeriri.ne.jp