
#sf22us

Dissecting WPA3

Megumi Takeshita
Ikeriri network service

Materials: all trace files, python codes are here
https://www.ikeriri.ne.jp/sharkfest/03DissectingWPA3.zip

#sf22us

Megumi Takeshita, packet otaku

• Founder, ikeriri network service co., ltd
• Reseller of CACE technologies in 2008
• Worked SE/IS at BayNetwork, Nortel
• Wrote 10+ books about Wireshark
• Instruct Wireshark to JSDF and other company
• Reseller of packet capture / wireless-tools
• One of the contributors of Wireshark

Translate Wireshark into Japanese

#sf22us

Session Details
We need a new security standard in the 6/6E generation of WiFi,
WPA3 has an SAE (Simultaneous Authentication of Equals)
authentication handshake and PMF (Protected Management
Frames) mechanism. In this session, Megumi shows you WPA3
trace analysis using Wireshark. Follow the packets and
understand the safe way to use the wireless network

Materials
all trace files and Wireshark profiles are here
https://www.ikeriri.ne.jp/sharkfest/03DissectingWPA3.zip

3

#sf22us

WPA2-PSK dissection
● Open wpa2psk-ssid-ikeriri6-pass-wireshark.pcapng

this trace is captured and decrypted by TamoSoft
CommView for WiFi in the WiFi6 environment

● It is a typical linkup process of WPA2-PSK between
iphone13 (private MAC address) and ASUS AP

4

#sf22us

4way handshake (common in WPA2 and WPA3)
● There are 4 way handshake after link-up process,
● Enter “eapol” in Display filter and make FlowGraph

● At first, AP sends Key(Message 1 of 4) and STA reply
Key (Message 2 of 4) to exchange PTK for unicast.
Then AP sends Key (Message 3 of 4), STA replies.
Key (Message 4 of 4) to confirm GTK for multicast.

5

#sf22us

● The passphrase is used for PSK(Pre Shared Key)
● PMK (Pairwise Master Key) is created by 4096 round

times calculation of PBKDF2 hash function,
with SHA1 algorithm, using PSK and SSID
e.x. PMK = pbkdf2_hmac('sha1’, PSK, SSID,4096)

● Lets’s start checking PMK using Wireshark
Go back to the trace, wpa2psk-ssid-ikeriri6-pass-
wireshark.pcapng, and check the #5 packet, the
first EAPOL message 1/4

6

#sf22us

Set Decryption key in Wireshark

● Select “IEEE 802.11 QoS
Data, Flags:F.”
header, right-click and
choose Protocol preference
> Open IEEE802.11 wireless
preferences…

● Click “Edit…” button of the
Decryption keys

7

#sf22us

● We can set 5 styles of WEP and WPA
decryption keys in Wireshark 3.6

Key, stype explanation

wep WEP key (hex value) for WEP encryption

wpa-pwd Passphrase:SSID (ascii) For WPA1-PSK, WPA2-PSK

wpa-psk Raw PSK (hex value) 256-bit pre-shared ("raw") key
https://www.wireshark.org/tools/wpa-
psk.html

tk Temporal Key
(hex value)

TK is used for actual encryption key, TK is
a part of PTK (Pairwise-Transient-Key)

msk Master Session Key
(hex value)

Master Session key is derived from 802.1x
EAP authentication process
if you use WPA1-EAP, WPA2-EAP.
You can set msk from the debug
information of the AP and wireless lan
controller.

8

https://www.wireshark.org/tools/wpa-psk.html

#sf22us

● Set key type as “wpa-pwd” and input key
“wireshark:ikeriri6” in decryption key dialog

● Click “OK” to close WEP and
WPA decryption Keys dialog

● “OK” again to close IEEE802.11
wireless LAN preference

9

#sf22us

Confirm your QoS Data frames are decrypted
10

● Choose first QoS Data frame #9 and open IEEE802.11 QoS
Data Header > CCMP (Counter mode with Cipher-block
chaining Message authentication code Protocol) parameters

#sf22us

TK(wlan.analysis.tk) and PMK(wlan.analysis.pmk)
11

● Wireshark decrypt 4way handshake and add generated fields,
TK(Temporal Key), actual AES key of the communication and
PMK(Pairwise Master Key) 32 bytes(256bit), 4096 round times
calculation of PBKDF2 function with SHA1 algorithm, using
PSK and SSID

● We can also test this calculation by Python
from hashlib import pbkdf2_hmac
pwd="wireshark"
ssid="ikeriri6"
pmk = pbkdf2_hmac('sha1', pwd.encode('ascii'), ssid.encode('ascii'), 4096, 32)
print(pmk.hex())

#sf22us

Check PMK generation by VisualStudio Code
12

● Run pmk.py to check the PMK from the output with
Wireshark [PMK:] field, it is the same value

● Station (iPhone13) and AP (ASUS) share this
information, but never send it to the network.

#sf22us

Let’s start dissecting 4way handshake
13

● ASUS(AP) and iPhone13(STA) know the same PMK

● Exchange and Confirm PTK in Messages 1,2
Exchange and Confirm GTK in Messages 3,4

#sf22us

Packet #5 Key(Message 1 of 4) AP->STA
14

● AP creates and
sends Nonce
(ANonce),32bytes
random value.

● Message1 packet
also contains AP’s
MAC Address.

#sf22us

PTK creation from STA(iPhone) side (1of4)
15

● STA starts to create PTK (Pairwise Transient Key)
after STA received EAPOL Message 1of4 (Packet 5)

● STA creates its own Nonce(Snonce), 32bytes random
● PTK is created from ANonce, Snonce, AP MAC

address and STA mac address
PTK = PRF-512(PMK, “Pairwise key expansion”,
Min(AP MAC, STA MAC) || Max(AP MAC, STA MAC) ||
Min(ANonce, SNonce) || Max(ANonce, SNonce))
*PRF(Pseudo-Random Function) is SHA1 hash value from input paratmeter, PMK,
“Pairwise key expansion” and Min(AP MAC, STA MAC) || Max(AP MAC, STA MAC)
|| Min(ANonce, SNonce) || Max(ANonce, SNonce))

#sf22us

PTK is a big key ring consists of many WPA2/WPA3 keys
16

PMK（Primary Master
Key) 256bits

PTK = PRF-512(PMK, “Pairwise key expansion”, Min(AP MAC, STA MAC) ||
Max(AP MAC, STA MAC) || Min(ANonce, SNonce) || Max(ANonce, SNonce))

PTK(Pairwise Transient Key) 512bit

Anonce
32bytes random

SNonce
32 bytes random

AMAC
AP’s MAC address

EAPOL KEK（Key Encryption Key) 128bits

EAPOL KCK(Key Confirmation Key) 128bits

Temporal Key 128bits for actual communication AES encryption/decryption key

Receive MIC Key (MIC Secret) 64bits for receiving packet Message Integrity Code

Transmit MIC Key(MIC Secret) 64bits for sending packet Message Integrity Code

SMAC
STA’s MAC address

#sf22us

Packet #6 Key(Message 2 of 4) STA->AP
17

● STA creates and
sends Nonce
(SNonce),32bytes
random value.

● STA calculate and
add WPA Key MIC

● Message2 packet
also contains STA’s
MAC Address

#sf22us

STA created SNonce and Add MIC Key Data
18

● Receiving 1of4 Messages, STA creates PTK
● STA sets SNonce, 32bytes random value
● STA also adds 16 bytes WPA Key MIC field,

calculated SHA1 HMAC from all of the 802.1x fields

● WPA Key MIC means the confirmation that created
PTK is the same with STA and AP
(Receiving 2of4 Message, AP also creates PTK and
check the WPA Key MIC is correct)

#sf22us

PTK creation from AP(ASUS) side
19

● AP starts to create PTK (Pairwise Transcient Key)
after EAPOL Message 2of4 (Packet 6)

● PTK is created from ANonce, Snonce, AP MAC
address and STA mac address
PTK = PRF-512(PMK, “Pairwise key expansion”, Min(AP MAC, STA MAC) || Max(AP
MAC, STA MAC) || Min(ANonce, SNonce) || Max(ANonce, SNonce))

● AP checks the WPA Key MIC field to calculate
SHA1HMAC from all of the 802.1x fields with the MIC
field set to all zeros.

● If the calculated MIC is the same with the
Message2of4, STA and AP shared the same PTK.

#sf22us

◉ Check Actual MIC with Calculated MIC
20

802.1X Authentication
Packet fields

Including actual MIC
Calculated MIC

Set zero to the mic field value
And create SHA1 hash from all fields

pick the first 128bits from 160bits hash

IEEE802.11
Data

IEEE802.2
LLC

#sf22us

If calculated MIC is not the same with
WPA Key MIC value of Message 2of4 (Packet6),
It usually means passphrase is not the same.

21

● Open notmatchmic.pcapng and set display filter as
“wlan.addr_resolved contains Nintendo”

#sf22us

22

● This trace tested passphrase mismatch between
Modacom AP and Nintendo STA.

● We can find the iteration of Message1, Message2
because AP’s calculated MIC is not the same as
Message 2 WPA Key MIC.

#sf22us

PTK exchange Demonstration
23

● I referred and created the WPA2 implementation
Python code from Nicholas smith
https://nicholastsmith.wordpress.com/2016/11/15/
wpa2-key-derivation-with-anaconda-python/

● It is not perfect, not actual, but a Pseudo concept,
I set parameters from the trace file.
wpa2psk-ssid-ikeriri6-pass-wireshark.pcapng

● Open ptk.py using VSCode.

https://nicholastsmith.wordpress.com/2016/11/15/wpa2-key-derivation-with-anaconda-python/

#sf22us

Open ptk.py (I referred and created
the code from Nicholas smith)
https://nicholastsmith.wordpress.com/2016/11/15/wpa2-key-derivation-with-anaconda-python/

24

#sf22us

Run ptk.py with this trace file parametersnaconda-python/
25

Message(1of4)
packet #5

Message(2of4)
packet #6

#sf22us

ptk.py outputs PMK,PTK,TK and MIC value
26

#sf22us

Check the MIC is correct
27

● The calculated MIC value and packet are the same.
● AP and STA succeeded in sharing the same PTK (and

GTK later) without sending key data into the network.

#sf22us

Check TK(Temporal Key)
28

● TK is used for actual encryption/decryption AES key
for unicast data communication between AP and STA.

● Compare the calculated TK from ptk.py with the TK
field in CCMP parameters of QoS Data packet (for
example, try packet #10) (WPA3-SAE also use this)

BINGO!!

#sf22us

Packet #7 Key(Message 3 of 4) AP->STA
29

● AP creates Nonce
(Gnonce), random.

● AP crates and sends
GTK safely with KCK
/ KEK in securely.
GTK is used for
multicast/broadcast

● AP calculates and
adds WPA Key MIC.

#sf22us

GTK creation at AP side
30

● GTK is created from GMK, Gnonce(Group Nonce),
AP’s MAC address and Group Key Expansion

● GTK is used for broadcast and multicast, and GTK is
the same key between all STA and AP, so GTK will
be changed periodically (using a 2-way handshake)

GTK 256bits for broadcast / multicast communication

TK(Temporal Key) 128bits AES encryption/decryption key

Receive MIC Key (MIC Secret) 64bits for receiving packet Message Integrity Code

Transmit MIC Key(MIC Secret) 64bits for sending packet Message Integrity Code

#sf22us

Check the GTK from Message 3of4
31

● Open WPA Key Data in 802.1X Authentication header
of Message 3of4 (Packet #7)

● Open “Tag: Vendor Specific: Ieee 802.11: RSN GTK”

GTK is here

#sf22us

Compare KCK and KEK
32

● KCK(Key Confirmation Key) and KEK(Key Encryption
Key) are used for secure key distribution.

● Confirm Wireshark calculated KCK, KEK is the same
with ptk.py generated KCK, KEK

● It means GTK sends/receives securely

#sf22us

Packet #7 Key(Message 4of4) STA->AP
33

● STA received and
installed GTK in
Message 3of4 (#6)

● STA adds WPA Key
MIC for confirmation

● AP receives Message
4of4 and confirms
packet MIC with
calculated MIC.

#sf22us

Conclusion:4 way handshake in WPA2/WPA3
34

AP
STA

Anonce, AMAC

Snonce, MIC, SMAC

Gnonce, GTK, MIC

MIC

Create PTK and calculate MIC

Compare MIC

Create PTK and calculate MIC

Install GTK and calculate MIC

#sf22us

WPA2 is good, but…
35

● It has been over ten years since WPA2 was born.
● We can use a dictionary attack if we capture a

complete 4-way handshake between AP and STA.
● Smartphones and tablets are positive to roam, so

faked Deauthentication and Disassociation frames
can lead to tons of new 4-way handshake packets.

● Some new attack method comes, for example,
KRACKS blocks the original Message3of4 from AP
and tries many GTK patterns to assure keys.

#sf22us

Deauth attack
36

● faked Deauthentication and Disassociation frames
can lead to tons of fresh 4-way handshake packet
airreplay-ng --deauth wlan0mon

● Use dictionary attack if we capture just a set of a
complete 4-way handshake between AP and STA.

● Open deauthattack.pcap and set Display filter as
“wlan.fc.type_subtype==12 or eapol”

● You can find many 4-way handshake packets of
Stations (Sony_xx:yy:zz) after Deauthentication.

#sf22us

37

● faked Deauthentication frames (source address is
faked AP) lead to tons of fresh 4-way handshake

Open deauthattack.pcap

#sf22us

WPA3 Wi-Fi Protected Access
◉ WPA3 is the new security standard for wireless networks.

https://www.wi-fi.org/download.php?file=/sites/default/files/private/WPA3_Specification_v3.0.pdf

◉ WPA3 personal mode (WPA3-SAE) uses SAE(Simultaneous
Authentication of Equals), derived from Dragonfly Key
Exchange(RFC7664), instead of open authentication.
https://www.rfc-editor.org/info/rfc7664

◉ AP and STA exchange 4 packets (AP/STA Commit, AP/STA
Confirm) and create PMK at the authentication phase,
So PMK is different every time. This provides forward
security, we cannot attack from an old 4-way handshake
with the fresh PMK. (WPA2-PSK uses the same PMK)
It means a dictionary attack is (almost) impossible!!

38

https://www.rfc-editor.org/info/rfc7664

#sf22us

◉ Compare wpa2psk-ssid-ikeriri6-pass-wireshark.pcapng
with wpa3psk-ssid-ikeriri6-pass-wireshark.pcapng

◉ Both WPA2 and WPA3 use the same 4-way handshake
mechanism to create and share PTK, GTK

39

WPA2

WPA3

#sf22us

Difference between WPA2 and WPA3
Explanation WPA２ Personal

WPA2-PSK
WPA３ Personal
WPA3-SAE

PTK, GTK exchange Both WPA2 and WPA3 use 4 way handshake
Passphrase length From 8 to 63

characters
From 8 to 128
characters

Temporal Key
(encryption key)

AES(128bits) AES(128bits)

Authentication method
(PMK creation)

Open System/Shared
key authentication
PSK+SSID->PMK

SAE（Simultaneous Authentication of Equals)

Encryption of
Management frame

Not nessary PMF（Protected Management Frames）
(Optionally)

Brute force prevention Not nessary Lock out a device after a number of
unsuccessful attempts (Optionally)

40

https://www.wi-fi.org/download.php?file=/sites/default/files/private/WPA3_Specification_v3.0.pdf

#sf22us

41
◉ Open wpa2 trace file and set display filter as

“wlan.fc.type_subtype == 0x000b”
◉ Extract IEEE802.11 Wireless Management

◉ WPA2 Open System Authentication checks the
match of SSID name (ikeriri6)

#sf22us

42
◉ Open wpa3 trace file and set display filter as

“wlan.fc.type_subtype == 0x000b”
◉ Extract IEEE802.11 Wireless Management
◉ There are 4 Authentication packets with SAE

Message type as follows STA Commit(1), AP
Commit(1), STA Confirm(2), AP Confirm(2)

#sf22us

43

◉ Dragonfly use Elliptic-Curve Cryptography(ECC)
ECC is a difficult mathematical theory, so think this
in programming words easily.

◉ The finite field is a mathematical term, in other
words, the calculatable mod value collection.
if we set mod value p=11(p:prime field GF(p))
and the mod collection is {0,1,2,…,9,10}
we can calculate the mod collection, for example
3 * 5 = 15 is a element of the mod collection 4
3*5=15≡4 (mod 11). We use this for Elliptic-Curve
Discrete Logarithm Problem (seems difficult...)

Understand Dragonfly key exchange with simple example

#sf22us

44

◉ We can translate Elliptic-Curve Discrete Logarithm
Problem in a computer program like below,
int a=2,n=5,p=11, b=a^n mod p (^:exponentiation)
we can calculate b easily from a,n,p
b=2*2*2*2*2 mod 11=32 mod 11 =10

◉ So how do we find n (Logarithm) from a,b and p,
we need to test incrementally, n=1, n=2, n=3, …
if the parameters are such a vast number, finding
Logarithm n is almost impossible in today’s PC

◉ ECC use this ECDLP for encryption
(e.x. RSA use Prime factorisation for encryption)

Understand Dragonfly key exchange with simple example

#sf22us

45

◉ We can translate the Elliptic-Curve Discrete
Logarithm Problem in a computer program like,
int a=2,n=5,p=11, b=a^n mod p (^:exponentiation)
we can calculate b easily from a,n,p
b=2*2*2*2*2 mod 11=32 mod 11 =10

◉ So how do we find n (Logarithm) from a,b and p,
we need to test incrementally, n=1, n=2, n=3, …
if the parameters are such a vast number, finding
Logarithm n is almost impossible to calculate.

◉ ECC use this ECDLP for encryption.

Understand Dragonfly key exchange with simple example

#sf22us

46

Dragonfly handshake of WPA3-PSK
◉ Create Statistics>Flow Graph

◉ Both AP and STA can initiate the handshake, send
Auth-Commit and Auth-Confirm each other
with scholar and (finite field) element value.

Alice (e.g. STA)

Auth-Commit(sA,eA)

Bob (e.g. AP)

Auth-Commit(sB,eB)

Auth-Confirm(cA)

Auth-Confirm(cB)

#sf22us

47

● SAE handshake has
2 Auth-Commit and
2 Auth-Confirm message

● Auth-Commit has
Scalar(sA,sB) and Finite
Field Element (eA,eB)

● Auth-Confirm has a
Confirm value

● They create and share PMK
during these 4 packets

#sf22us

48

● Alice(STA) picks random rA and mA and calculates
sA=(rA+mA) mod q
eA=-mA・GF(p) (・means inner products of vector)

● Then send Auth-Commit with sA (256bits Scalar)
and GF(p) (512bits Finite Field Element)

#1:Auth-Commit from Alice(STA)

#sf22us

49

● Bob(AP) picks random rB and mB and calculates
sB=(rB+mB) mod q
eB=-mB・GF(p) (・means inner products of vector)

● Then send Auth-Commit with sB (256bits Scalar)
and GF(p) (512bits Finite Field Element)

#2:Auth-Commit from Bob(AP) at same time

#sf22us

50

● Each Alice(STA) and Bob(AP) calculate their own and
the other side Scalar and Finite field element to
create and share PE(Password Equivalent) value.

Auth-Commit (Scalar, Finite Field Element)

#sf22us

51

● Each Alice(STA) and Bob(AP) determine random
values and GF(p) Finite Field Element, but How?

● RFC7664 Dragonfly key exchange defines a “Hunting
and Pecking” algorithm to determine PE(Password
Equivalent), try to find the point in the Elliptic
Curve from Alice(STA) and Bob(AP) MAC addresses.
https://www.rfc-editor.org/info/rfc7664

● We need over 40 times iterations of hunting and
pecking loop against side-channel attack.
(first implementation of Dragonfly)

3.2.1. Hunting and Pecking with ECC

https://datatracker.ietf.org/doc/html/rfc7664

#sf22us

52

● We calculate the base value, the hash from the counter, mac
addresses of Alice and Bob and the passphrase (counter=1)
base = H(max(Alice,Bob) | min(Alice,Bob) | password | counter)

● We use KDF(key derivation function) to create bitstream temp
value(length is prime number) and the seed
n = len(p) + 64
temp = KDF-n（base、 "Dragonfly Hunting and Pecking"）
seed = (temp mod (p - 1)) + 1

● Start loop to find the valid point of Elliptic Curve, use seed as
x-axis parameter to check x^3 + a*x + b is a quadratic residue
modulo p. if not, the counter increase, create new seed and
set x-axis, current base value.

3.2.1. Hunting and Pecking with ECC

https://datatracker.ietf.org/doc/html/rfc7664

#sf22us

53
Hunting and Pecking with ECC Groups 3.2.1 RFC7664

found = 0
counter = 1
n = len(p) + 64
do {

base = H(max(Alice,Bob) | min(Alice,Bob) | password |
counter)

temp = KDF-n(base, "Dragonfly Hunting And Pecking")
seed = (temp mod (p - 1)) + 1
if ((seed^3 + a*seed + b) is a quadratic residue mod p)
then

if (found == 0)
then

x = seed
save = base
found = 1

fi
fi
counter = counter + 1

} while ((found == 0) || (counter <= k))
y = sqrt(x^3 + ax + b)
if (lsb(y) == lsb(save))
then

PE = (x,y)
else

PE = (x,p-y)
fi

#sf22us

54

● Alice(STA) verifies sB and eB, calculates
K=rA・(sB・P＋eB) (・means inner products)
tr=(sA,eA,sB,eB) (Alice and Bob know these values)
cA=HMAC(Hash(K),tr)

● Then send Auth-Confirm with cA (256bits Confirm)

#3:Auth-Confirm from Alice(STA)

#sf22us

55

● Bob(AP) verifies sA and eA, calculates
K=rB・(sA・P＋eA) (・means inner products)
tr=(sB,eB,sA,eA) (Alice and Bob know these values)
cB=HMAC(Hash(K),tr)

● Then send Auth-Confirm with cB (256bits Confirm)

#4:Auth-Confirm from Bob(AP)

#sf22us

56

● Each Alice(STA) and Bob(AP) can verify the packet’s
Confirm value with the calculated Confirm value

● K=rB・(sA・P＋eA)
tr=(sB,eB,sA,eA)
cB=HMAC(Hash(K),tr)

● If the calculated Confirm value is the same as the
packet, we can share PE(Password Equivalent) value
without sending passphrase information to each other.

Auth-Confirm (Confirm value)

● K=rA・(sB・P＋eB)
tr=(sA,eA,sB,eB)
cA=HMAC(Hash(K),tr)

#sf22us

57

PMK creation from PE value
◉ Then Alice(STA) and Bob(AP) create PMK

from PE(Password Equivalent) value.
◉ Random values make PE, so PMK is different every

time during Dragonfly key exchange
◉ Let’s check this, dragonfly_implementation.py is the

sample Python code for the Dragonfly (SAE)
handshake implementation by NikolaiT.
https://github.com/NikolaiT/Dragonfly-SAE/blob/master/dragonfly_implementation.py

◉ Open dragonfly_implementation.py in VSCode

#sf22us

58 dragonfly_implementation.py
◉ There are many parameters,

such as ECC curve value,
I also set the parameters of the
passphrase, STA mac Address
and AP mac Address.

◉ Note this code is not actual, just
a demonstration example.

◉ Please run this code more than 2
times and check the outputs.

#sf22us

59 Check Commit Values

◉ Please check Commit Value
[STA]Scalar and [STA] Element(Finite Field Element)
[AP]Scalar and [AP] Element (Finite Field Element)

◉ Please check Confirm Value
[STA] Received Token from Peer
[AP] Received Token from Peer

#sf22us

60 Check Confirm value

◉ Also, check Packet’s Confirm Value is the same with
calculated Confirm Value
[STA] Computed Token from Peer is the same with
[STA] Received Token from Peer
[AP] Computed Token from Peer is the same with
[AP] Received Token from Peer

#sf22us

61 Check shared secret(PE), PMK
◉ Look for each shared secret(Password Equivalent)

value between Alice(STA) and Bob(AP).
[STA] Shared Secret and [AP] Shared Secret

◉ Also, check PMK values, [STA] Pairwise Master
Key(PMK) and [AP] Pairwise Master Key(PMK)
Yes, we can share PE, PMK sending passphrase
information to each other.

◉ Let’s try over 2 times. You can find these values are
different at every try.

#sf22us

62 PMK,shared key is defferent!!
◉ 1st try

◉ 2nd try

#sf22us

63

Forward Security, PMF and lockout
◉ We understand PMK is different every time in WPA3,

it provides Forward Security.
◉ We cannot use a offline dictionary attack
◉ Deauth attack is impossible with PMF (Protected

Management Frames). (optionally)
◉ Wrong passphrase lockout function prevents brute

force attack. (optionally)
◉ WPA3-SAE is (almost) impossible for cracking now.

#sf22us

64 Vulnerabilities of WPA3 dragon blood
◉ Downgrade WPA3-SAE to WPA2-PSK
◉ DoS attack with over 70 connection requests

(Hunting and Pecking calculation DoS) may stop AP.
◉ Hunting and Pecking use 40 round time to find

random values, so the old implementation may be
weak with a side-channel attack.

◉ Chosen random value attack: set rB to zero.
◉ Enable Brute force using a faked mac address to

avoid lockout, and so on…
-> these vulnerabilities are (almost) fixed now!!

#sf22us

65 Appendix: WPA3-EAP
◉ WPA3 Enterprise mode is called WPA3-EAP
◉ WPA3-EAP use CSNA（Commercial National Security

Algorithm）192bit encryption instead of AES.
◉ WPA3 needs a RADIUS (802.1x authentication) server

We can use TLS, LEAP, PEAP and other
authentication methods, the authentication server
provides each connection’s PMK.

◉ WPA3-EAP is the best choice if your network has
many users and APs. (if your company has a budget)

#sf22us

USE WIRESHARK

ikeriri network service

http://www.ikeriri.ne.jp

Thank you for watching !!
Please complete app-based survey

66

https://www.ikeriri.ne.jp/sharkfest/03DissectingWPA3.zip
https://www.ikeriri.ne.jp/sharkfest/03DissectingWPA3.zip

