
#sf22us

#sf22us • Kansas City • July 9-14

TCP Selective Acknowledgement (SACK)
…correctly interpreting this field can help you

be a better TCP performance
troubleshooter… John PittleGlobal Customer Experience CTO

Riverbed Technologies
john.pittle@riverbed.com

@end2endviz
www.linkedin.com/in/john-pittle

mailto:john.pittle@riverbed.com

#sf22us

#sf22us • Kansas City • July 9-14

Abstract
• RFC 2018 introduced an optional ACK mechanism
called “Selective Acknowledgement” (SACK)

• Understanding how to interpret SACK can help
you quickly determine effect of Out of Sequence
packets on overall application performance

#sf22us

#sf22us • Kansas City • July 9-14

My Agenda

• Call out relevant RFCs

• Review TCP ACK Basics

• SACK Introduction, Decode Details, Examples

• Wireshark columns, filters, and colorization

• Adventures from the Field - Visualization Replay

• Wrap-Up

#sf22us

#sf22us • Kansas City • July 9-14

John Who?

• Practicing Performance
Engineering since 1980

• Protocol Analysis since 1991
• Professional Services with

OPNET / Riverbed since 2005
• Love the mystery of a

complicated performance issue

#sf22us

#sf22us • Kansas City • July 9-14

John Who?

• Practicing Performance
Engineering since 1980

• Protocol Analysis since 1991
• Professional Services with

OPNET / Riverbed since 2005
• Love the mystery of a

complicated performance issue
• Shaved off beard in 2003…

#sf22us

#sf22us • Kansas City • July 9-14

#sf22us

#sf22us • Kansas City • July 9-14

Related RFCs

• RFC 793 – TCP (Original RFC – 1981)

• RFC 2018 – TCP Selective ACK Options (1996)

• RFC 2883 – D-SACK - An Extension to SACK …
(2000)

#sf22us

#sf22us • Kansas City • July 9-14

Review: TCP ACK Behavior

• As long as packets arrive in the expected order,
receiver will ACK every other packet (Default
Behavior)

• If a packet arrives out of order, the receiver will
immediately issue an ACK with a value equal to
the SEQ that was expected

#sf22us

#sf22us • Kansas City • July 9-14

Review: TCP ACK Behavior

• Receiver will continue to ACK every packet until
the expected packet is received

• If sender receives 4 ACKs with the same ACK
number (aka Triple Duplicate ACK) she will
retransmit the missing segment
• Assumes TCP Fast Retransmit & Recovery (FRR) is available and

enabled

#sf22us

#sf22us • Kansas City • July 9-14

! Heads Up !

Important term on the next slide

#sf22us

#sf22us • Kansas City • July 9-14

Cumulative ACK (RFC 793)

The ACK in the TCP header is formally called the “Cumulative ACK”.

The value reflects stream bytes received in order up to the point when

the ACK packet was transmitted.

Receiver’s TCP declares that all bytes in the stream up to ACK-1 have

been received. The next byte of TCP stream expected by the receiver

should start with a SEQ equal to this ACK.

#sf22us

#sf22us • Kansas City • July 9-14

Selective Acknowledgement

• RFC 2018 proposed an enhancement to the TCP
ACK mechanism

• Selectively acknowledge segments that have
arrived out of order
• The sender won’t have to retransmit those segments if
he knows they’ve been received

• But, this can’t be accomplished with Cumulative ACK
field alone, so a new field is needed

#sf22us

#sf22us • Kansas City • July 9-14

Selective ACK – A TCP Enhancement

• New addition to the TCP Options field of the TCP
header

• Up to four (4) contiguous out of order
segments/segment ranges can be defined using
SACK
• Only three (3) if the TCP Timestamp option is also being
used

#sf22us

#sf22us • Kansas City • July 9-14

Enabling SACK

• On by default in modern TCP Stacks

• SACK is negotiated at connection start-up

• Decode the TCP Options in SYN and SYN+ACK
and you’ll see “SACK Permitted”
• Meaning …”I will process the SACK field if you send it to me”

• Each side can independently chose

#sf22us

#sf22us • Kansas City • July 9-14

Intended Benefits
• Inform the sender with better info about the success of
TCP segment delivery

• Goal is to minimize the amount of unnecessary
retransmissions

• Will not necessarily change Congestion Control algorithms

• Any retransmission may still have a negative effect on the
Congestion Window and related timers

#sf22us

#sf22us • Kansas City • July 9-14

Use during packet analysis

• Interrogating the SACK fields will help you
quantify the extent of Out of Sequence packets

• Use “Bytes in Flight” as a guiding metric

• If in-flight data stays high no need to look any
further

• If in-flight data constantly dips or hits zero; or you
frequently see TCP slow-start, you may find the
root cause is severe out of sequence packets

#sf22us

#sf22us • Kansas City • July 9-14

! Heads Up !

Three new terms on the next slide

#sf22us

#sf22us • Kansas City • July 9-14

Wireshark is SACK Aware

• Wireshark can decode the SACK fields in the TCP
Options section of the TCP layer

• “SACK Count” and “Left Edge / Right Edge” values
can be displayed as columns in the decode summary
section

#sf22us

#sf22us • Kansas City • July 9-14

Time for an Illustration…

#sf22us

#sf22us • Kansas City • July 9-14

SACK Illustration #1

• Sender transmits a burst of 5 packets as follows:
• Pkt 1 SEQ=11 Len=10
• Pkt 2 SEQ=21 Len=10
• Pkt 3 SEQ=31 Len=10
• Pkt 4 SEQ=41 Len=10
• Pkt 5 SEQ=51 Len=10

#sf22us

#sf22us • Kansas City • July 9-14

SACK Illustration #1

• Due to a network issue, the packets are received
in the following order:
• Pkt 1
• Pkt 2
• Pkt 4
• Pkt 5
• Pkt 3

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #1

1st two packets arrive
11 - 30

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #1

1st two packets arrive

Packet 4 arrives

11 - 30

11 - 30 41-50

Left Edge = 41

Right Edge = 51

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #1

1st two packets arrive

Packet 4 arrives

Packet 5 arrives

11 - 30

11 - 30

11 - 30

41-50

41-60

Left Edge = 41

Right Edge = 51

Right Edge = 61

Left Edge = 41

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #1

1st two packets arrive

Packet 4 arrives

Packet 5 arrives

Packet 3 arrives

All data received up through and including byte 60, receiver is ready for TCP
stream byte 61

11 - 30

11 - 30

11 - 30 11-60

41-50

41-60

Left Edge = 41

Right Edge = 51

Right Edge = 61

#sf22us

#sf22us • Kansas City • July 9-14

Time for some decodes…

#sf22us

#sf22us • Kansas City • July 9-14

SACK Wireshark Columns

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

#sf22us

#sf22us • Kansas City • July 9-14

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

I’ve also received one or more

segment(s) out of order:

17619-19042r.

#sf22us

#sf22us • Kansas City • July 9-14

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

I’ve also received one or more

segment(s) out of order:

17619-19042r.

What’s missing?

#sf22us

#sf22us • Kansas City • July 9-14

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

I’ve also received one or more

segment(s) out of order:

17619-19042r.

What’s missing?

14771-17618r

#sf22us

#sf22us • Kansas City • July 9-14

Notice ACK Packet Len

#sf22us

#sf22us • Kansas City • July 9-14

!! Heads Up !!

Prepare to observe awesome
Wireshark feature

#sf22us

#sf22us • Kansas City • July 9-14

How did we get those columns?

Navigate to the TCP Options decodes

Highlight the field

Right

mouse

click

#sf22us

#sf22us • Kansas City • July 9-14

Receiver Side TCP Mechanics

#sf22us

#sf22us • Kansas City • July 9-14

Receiver’s ACK responses

• Pkt 1 Arrives, receiver starts delayed ACK timer,
waits for a 2nd packet

#sf22us

#sf22us • Kansas City • July 9-14

Receiver’s ACK responses

• Pkt 2 Arrives, receiver cancels delayed ACK timer,
sends:
• ACK=31

#sf22us

#sf22us • Kansas City • July 9-14

Receiver’s ACK responses

• Pkt 4 Arrives…, but wait!, it’s out of order…

• receiver issues immediate ACK because…

#sf22us

#sf22us • Kansas City • July 9-14

Receiver’s ACK responses

• …the packet we just received is out of order

• Here’s the ACK and SACK info…
• ACK=31 SACK=41-51

#sf22us

#sf22us • Kansas City • July 9-14

Receiver’s ACK responses

• Pkt 5 Arrives but it’s also out of order, receiver
issues another immediate ACK because packet is
not the expected segment (i.e. it’s OoO)
• ACK=31 SACK=41-61

• *** Note: at this point receiver TCP stack is holding up to 2 packets
in the receive buffer and can not hand off to the App ***

#sf22us

#sf22us • Kansas City • July 9-14

Receiver’s ACK responses

• Pkt 3 Arrives, receiver issues:
• ACK=61

#sf22us

#sf22us • Kansas City • July 9-14

Receiver’s ACK responses

• Pkt 3 Arrives, receiver issues:
• ACK=61

• Order is restored to the Force…

#sf22us

#sf22us • Kansas City • July 9-14

Another Example, Slightly More Complicated

• Sender transmits a burst of 6 packets as follows:
• Pkt 1 SEQ=11 Len=10
• Pkt 2 SEQ=21 Len=10
• Pkt 3 SEQ=31 Len=10
• Pkt 4 SEQ=41 Len=10
• Pkt 5 SEQ=51 Len=10
• Pkt 6 SEQ=61 Len=10

#sf22us

#sf22us • Kansas City • July 9-14

Another Example, Slightly More Complicated

• Due to a network problem, the packets are received in the following order:
• Pkt 1
• Pkt 3
• Pkt 6
• Pkt 4
• Pkt 5
• Pkt 2

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #2
Packet 1 arrives

11 - 20

Start Delayed ACK Timer…

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #2
Packet 1 arrives

Packet 3 arrives

11 - 20

11 - 20 31-40

ACK=21 SACK=31-41

Start Delayed ACK Timer…no ACK

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #2
Packet 1 arrives

Packet 3 arrives

Packet 6 arrives

11 - 20

11 - 20 31-40

11 - 20 31-40 61-70

ACK=21 SACK=31-41

ACK=21 SACK=31-41, 61-71

Start Delayed ACK Timer…no ACK

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #2
Packet 1 arrives

Packet 3 arrives

Packet 6 arrives

Packet 4 arrives

11 - 20

11 - 20 31-40

11 - 20 31-40 61-70

11 - 20 31-50 61-70

ACK=21 SACK=31-41

ACK=21 SACK=31-41, 61-71

ACK=21 SACK=31-51,61-71

Start Delayed ACK Timer…no ACK

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #2

Packet 5 arrives
11 - 20 31-70

ACK=21 SACK 31-71

#sf22us

#sf22us • Kansas City • July 9-14

Pop Quiz

Packet 5 arrives
11 - 20 31-70

ACK=21 SACK 31-71

How many packets

are in sender’s

retransmit queue?

#sf22us

#sf22us • Kansas City • July 9-14

Pop Quiz

Packet 5 arrives
11 - 20 31-70

ACK=21 SACK 31-71

How many packets

are in receiver’s

queue?

#sf22us

#sf22us • Kansas City • July 9-14

SACK Visualization #2

Packet 5 arrives

Packet 2 arrives

11 - 20 31-70

11-70

ACK=21 SACK 31-71

ACK=71

#sf22us

#sf22us • Kansas City • July 9-14

We Made It!

#sf22us

#sf22us • Kansas City • July 9-14

…more decodes…

#sf22us

#sf22us • Kansas City • July 9-14

Example with two SACK blocks

#sf22us

#sf22us • Kansas City • July 9-14

Example with two blocks OOS

#sf22us

#sf22us • Kansas City • July 9-14

A Different Wireshark Profile

#sf22us

#sf22us • Kansas City • July 9-14

! Heads Up !

Another cool Wireshark feature up next…

#sf22us

#sf22us • Kansas City • July 9-14

Edit “Occurrence #”
◉ Right mouse click on column header

◉ Select “Edit Column”

#sf22us

#sf22us • Kansas City • July 9-14

Coloring and Filtering Views

#sf22us

#sf22us • Kansas City • July 9-14

View with Filter & Color

#sf22us

#sf22us • Kansas City • July 9-14

What about that “Duplicate SACK?”

in RFC 2883?

◉ DUP ACK Not == DUP SACK (Nothing in common)

◉ Used by receiver to inform the sender “just received a

duplicate stream bytes segment”

◉ Check out Christian Reusch’s SharkFest 21 Virtual

Europe Session #12
○ https://www.youtube.com/watch?v=_19UdEtj6Ak

https://www.youtube.com/watch?v=_19UdEtj6Ak

#sf22us

#sf22us • Kansas City • July 9-14

Adventures from the Field

#sf22us

#sf22us • Kansas City • July 9-14

Adventures from the Field

• Next we’re going to look at actual results from a
troubleshooting engagement involving crazy high
levels out of sequence packets

• Not just high levels of OOS, but crazy high…

#sf22us

#sf22us • Kansas City • July 9-14

Scenario

• Pre-migration Performance Testing in Lab

• APP: Automation for virtual host provisioning

• Performance was so bad, customer was unable to
“green-light” the migration to the cloud

#sf22us

#sf22us • Kansas City • July 9-14

Lab Configuration

Inter-Zone

Routing

New VM to be

provisioned OS Image

Server

Wireshark Capture Sources

Public Zone MGMT Zone

Traffic: Client Downloading OS Configuration Build Details from Server

1 Gbps Links with no other active traffic

FW FW IPSIPS

#sf22us

#sf22us • Kansas City • July 9-14

Non-Technical Issues

• Finger pointing to the extreme…

• …each vendor (3) is sure they are innocent and
that it was the other vendor’s issue

• Challenge: Help Customer figure out why
throughput is so low, and help identify the vendor
causing the problem

#sf22us

#sf22us • Kansas City • July 9-14

Advanced Analytics & Viz

• Let’s take a quick look at a visualization of the
performance issue, before we deep dive into the
packets

• …with a little help from our Friends…

#sf22us

#sf22us • Kansas City • July 9-14

Summary of Delays

#sf22us

#sf22us • Kansas City • July 9-14

Summary of Delays

48.5 MB Xfer

117 x Retrans

20 x 3ACKs

49 x OOS

#sf22us

#sf22us • Kansas City • July 9-14

Review: Bytes in Flight

• What does this metric tell us?

• Answer: the number of stream bytes that are
outstanding on the network before sender
receives an ACK for the left most edge of the
current burst

• Usually reflects the sender’s Congestion Window

#sf22us

#sf22us • Kansas City • July 9-14

In-flight Data Analysis

We will zoom in on the next few slides

#sf22us

#sf22us • Kansas City • July 9-14

Zoom #1 - In-flight Data

#sf22us

#sf22us • Kansas City • July 9-14

Zoom #2 - In-flight Data

#sf22us

#sf22us • Kansas City • July 9-14

Zoom #3 - In-flight Data

#sf22us

#sf22us • Kansas City • July 9-14

Questions / Discussion

#sf22us

#sf22us • Kansas City • July 9-14

OOS Visualization + SACK Analysis

• The following section uses time lapse photography
to step you through a 19 packet burst chosen at
random

• The number, and nature, of out of sequence
packets is crazy high and it’s a nice example to
illustrate how to interpret the SACK field

#sf22us

#sf22us • Kansas City • July 9-14

Impact on Performance

• It’s also a great example of how OOS can impact
performance & how you can interpret “how bad is
bad” with SACK

#sf22us

#sf22us • Kansas City • July 9-14

ACK Packets Corresponding to a Packet Burst

• These are the ACKs from the client

#sf22us

#sf22us • Kansas City • July 9-14

ACK Packets Corresponding to a Packet Burst

• Each ACK corresponds to one (or more) of the
19 payload packets in our random sample

• We’ll use these ACKs to determine the arrival
order for the 19 packets

#sf22us

#sf22us • Kansas City • July 9-14

Before we start…. a quick Pop Quiz:

1. Why are there so many ACKs, I thought receiver is supposed to

ACK of every other packet?

#sf22us

#sf22us • Kansas City • July 9-14

2. Why does the ACK packet size change between 66, 78, 86, and

94?

#sf22us

#sf22us • Kansas City • July 9-14

3. Why is the client’s receive window continuing to shrink?

#sf22us

#sf22us • Kansas City • July 9-14

4. Why do we see so many duplicate ACKs?

#sf22us

#sf22us • Kansas City • July 9-14

Questions / Comments

#sf22us

#sf22us • Kansas City • July 9-14

#sf22us

#sf22us • Kansas City • July 9-14

Pre-Departure Orientation

• 19 Slide Journey

• The top portion of the slide shows you which
packet in the burst has been received

• The bottom portion shows you the ACK and SACK
values extracted from the corresponding ACK
packets

• Each slide represents a new packet being received
and the state of all previously received packets

#sf22us

#sf22us • Kansas City • July 9-14

Mgmt Frame

Orientation
Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Mgmt Frame

Orientation

This is the frame order as

seen in the Public capture

(closest to Receiver)

Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Mgmt Frame

Orientation

This is the frame order as

seen in the Public capture

(closest to Receiver)

Last Byte

This is the frame order as seen in the

Mgmt capture – traffic in transit to Public

(closest to Sender)

#sf22us

#sf22us • Kansas City • July 9-14

Mgmt Frame

Orientation

This is the frame order as

seen in the Public capture

(closest to Receiver)

Packet Just Received

Bracketed in Red

Last Byte

This is the frame order as seen in the

Mgmt capture – traffic in transit to Public

(closest to Sender)

#sf22us

#sf22us • Kansas City • July 9-14

Mgmt Frame

Orientation

This is the frame order as

seen in the Public capture

(closest to Receiver)

Packet Just Received

Bracketed in Red

Frames previously received

bracketed in Green

Last Byte

This is the frame order as seen in the

Mgmt capture – traffic in transit to Public

(closest to Sender)

#sf22us

#sf22us • Kansas City • July 9-14

ACK Details for each packet received

This is the TCP Header from ACK

Packet’s Decode Summary

Last ByteMgmt Frame

#sf22us

#sf22us • Kansas City • July 9-14

ACK Details for each packet received

This is the TCP Header from ACK

Packet’s Decode Summary

This is the value of the SACK from

TCP Options Field

Last ByteMgmt Frame

#sf22us

#sf22us • Kansas City • July 9-14

Ready to start our Wild Ride….?
◉ Fasten your seat belt..

◉ Focus on the Cumulative ACK values and the SACK

values as each packet is received..

◉ Double check your understanding, ask if what

you’re seeing tracks with our earlier study of SACK

◉ Prior to the start of this sequence, receiver had

signaled that he’s ready to receive the stream

starting at byte:

1,085,576,095

#sf22us

#sf22us • Kansas City • July 9-14

1st Packet Received

Last Byte

After receipt of the above packet (in Red), the receiver issued the following ACK

Mgmt Frame

#sf22us

#sf22us • Kansas City • July 9-14

2nd Packet Received

Last Byte

After receipt of the above packet (in Red), the receiver issued the following ACK

Mgmt Frame

#sf22us

#sf22us • Kansas City • July 9-14

3rd Packet Received

Last Byte

Notice the cumulative ACK has

increased to a value of 1085577543

SACK Field has not changed

Mgmt Frame

#sf22us

#sf22us • Kansas City • July 9-14

4th Packet Received
Last Byte

Right edge changed

Mgmt Frame

#sf22us

#sf22us • Kansas City • July 9-14

5th Packet Received
Mgmt Frame Last Byte

Right edge changed

#sf22us

#sf22us • Kansas City • July 9-14

5th Packet Received
Mgmt Frame Last Byte

*** and *** the order of the SACK blocks has changed

#sf22us

#sf22us • Kansas City • July 9-14

Packet #6
Mgmt Frame Last Byte

Cumulative ACK is updated, and one SACK block removed

#sf22us

#sf22us • Kansas City • July 9-14

Packet #7
Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #8

SACK now indicates three groups of non-contiguous

stream bytes have been received

Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #9
Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #10
Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #11
Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packets #12 + 13
Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #14

Notice that two of the dis-contiguous

blocks are now contiguous; so we go

from 3 blocks down to 2 blocks

Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #15

Notice the cumulative ACK has increased to

a value of 1085592023 and we’re down to

just one dis-contiguous block

Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #16

Left edge updated to reflect packet #16

Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #17

Cumulative ACK is updated to reflect receipt of #17

No change to SACK fields

Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #18

Right edge updated to reflect packet #18

Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Packet #19

New cumulative ACK reflects receipt of all 19 packets

(Plus, packet 20 not shown in the list….)

Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

After packet 19

It’s been a long, strange journey, but all data has finally been received

Mgmt Frame Last Byte

#sf22us

#sf22us • Kansas City • July 9-14

Buffer Mgmt Issues?

◉ FIFO?

◉ LIFO?

◉ UFO?

◉ IFFY?

#sf22us

#sf22us • Kansas City • July 9-14

Questions / Comments

#sf22us

#sf22us • Kansas City • July 9-14

Time Check

#sf22us

#sf22us • Kansas City • July 9-14

Appendix

• Outcomes from the Lab Study

• Reminders

• OOS Impact on Senders

• OOS Impact on Receivers

• Effects of Firewall SEQ # Randomization

#sf22us

#sf22us • Kansas City • July 9-14

Outcome from this Study

• Client was very pleased that we could help them
understand the full extent of the OOS problem
• Showed that packets are not “just a little out of
sequence” but significantly out of sequence

• Definitely impacted sender’s ability to maintain a large
congestion window

• Client re-evaluated plans to deploy more IPS devices

#sf22us

#sf22us • Kansas City • July 9-14

Outcome from this Study

• Client shared results with their IPS vendor which
triggered a major investigation into stream and
buffer management in the IPS

#sf22us

#sf22us • Kansas City • July 9-14

Outcome from this Study

• A few months later we tested a new model of IPS
in Client’s lab

• Some improvement but still a problem even at low
throughput levels

#sf22us

#sf22us • Kansas City • July 9-14

Reminders

• You can quickly determine presence of SACK in
Wireshark using a display filter!

• “tcp.options.sack.count”

• You can easily add SACK related columns to
Wireshark GUI

#sf22us

#sf22us • Kansas City • July 9-14

Closing Remarks
• Focus on “Bytes in Flight” Data

• If you see the congestion window constantly closing or reduced by
half, then you need to figure out why

• Interpreting SACK might help complete the picture

• It’s easy to get lost drilling in to SACK fields…

• It’s prudent to interpret some of them and make a
high level assessment as to the extent of OOS
packets
• To interpret them you have to understand the RFC and expected

behavior

#sf22us

#sf22us • Kansas City • July 9-14

Closing Remarks

• If you have a lot of SACKs with 3 or 4 gaps
declared, then OOS is “high” / “pervasive”,
chances are performance is degraded

• If you have a few SACKs with only 1 gap each,
then OOS may be less of a contributing factor to
slow performance

#sf22us

#sf22us • Kansas City • July 9-14

Cause and Effect

#sf22us

#sf22us • Kansas City • July 9-14

Review: Effect of the OOS on the sender

• Potential Throughput Killer: Will likely trigger TCP
congestion window reduction if he has to
retransmit

• Dependent on the OS and patch level of the
sender…and possibly the NIC driver (maybe)

• The RFC for SACK has a lot of “should”s and
“may”s.
• The implementer is allowed a lot flexibility in how they handle the

SACK information provided by the receiver

#sf22us

#sf22us • Kansas City • July 9-14

Effect of the SACK field on the sender

• Consider: should the sender retransmit just one
missing segment, or if he can see from the SACK
that lot’s of different packets are missing should
he retransmit all of them

• Also, sender has to maintain all packets in the
retransmit queue until they’ve been ACK’d,
possible stress on memory

#sf22us

#sf22us • Kansas City • July 9-14

Impact on Receiver

• He has to buffer all out of sequence packets

• Can not deliver any discontinuous stream bytes to
the app until all missing packets are received

• Will generate more ACKs – one for each OOS
packet received

• What happens if there are lots of gaps?
• Remember SACK can only record up to 4 gaps (3 if timestamp

option is also being used)

#sf22us

#sf22us • Kansas City • July 9-14

Ready to Wrap?

• Let’s look at a few reminders…

#sf22us

#sf22us • Kansas City • July 9-14

All bytes through 14770r have been

received and I’m ready for 14771r.

But wait there’s more….

SACK Wireshark Columns

#sf22us

#sf22us • Kansas City • July 9-14

Power of Profiles

#sf22us

#sf22us • Kansas City • July 9-14

Power of Colorization

#sf22us

#sf22us • Kansas City • July 9-14

Firewall Effects

• Some firewalls will randomize the starting TCP
SYN sequence number when new connections are
created

• The receiver only knows the randomized version
of the sequence numbers generated by the
Firewall

#sf22us

#sf22us • Kansas City • July 9-14

Firewall Effects

• When receiver creates ACKs with SACK values, the
SACK sequence numbers will not match the
sequence numbers in the TCP header known by
the sender
• Firewall will always restore the original sequence
numbers in the TCP header only

• …but no guarantees for translating the SACK field
• This generally makes the SACK field unusable for the
sender

#sf22us

#sf22us • Kansas City • July 9-14

Example of Firewall SEQ Randomization

• SACK sequence numbers bare no resemblance to
the SEQ or ACK in the TCP header

#sf22us

#sf22us • Kansas City • July 9-14

Example of Firewall SEQ Randomization

• Zoom in from previous slide

#sf22us

#sf22us • Kansas City • July 9-14

SACK is not a Promise

#sf22us

#sf22us • Kansas City • July 9-14

Effect of out of sequence arrivals on
the receiver

• Receiver is allowed to “reneg” if he runs out of
buffer space

#sf22us

#sf22us • Kansas City • July 9-14

Effect on Sender’s NIC
• What if TSO is enabled?

• What if TCP Chimney is enabled (Windows)?

• Who is managing the retransmit queue…the TCP
Stack on the OS or the NIC?

• I pose these questions because they might be
important...

• The specific NIC brand, driver version, and firmware
version may impact answers to the above..

#sf22us

#sf22us • Kansas City • July 9-14

Effect on Sender’s ESX Host NIC

• What if TSO is enabled on the Physical NIC?

• Who is managing the retransmit queue…the TCP
Stack on ESX, NIC, OS or the vNIC?

• The specific NIC brand, driver version, and firmware
version may impact answers to the above..

#sf22us

#sf22us • Kansas City • July 9-14

Supplemental Analytics Help

#sf22us

#sf22us • Kansas City • July 9-14

End of Session

