
#sf23us

Beyond Network 
Latency

Josh Clark
Huntington National Bank

Chasing Latency Up the Stack 



#sf23us
Who Am I?

◉ Distributed Performance Engineer – 2018-now
○ Performance and Latency Analysis
○ Collaborate with technical teams to identify bottlenecks in 

complex applications

◉ M.S. in Network Engineering – 2016
○ Theory of protocol design
○ Performance analysis of internet protocols



#sf23us
Testing Architecture - AWS

EC2 t2.micro 
Amazon Linux 2

EC2 t2.micro 
Amazon Linux 2

Nginx

GET /

GET /quick_response

GET /slow_response

uwsgi
Flask

Normal internet network latency of 30ms simulated on client using tc
Python script (request_code.py) deployed on client to simulate a user
All packets captured via tcpdump on the client



#sf23us
Defining Terms

◉ We’ll be using these terms throughout the talk, so let’s define them
○ Network Delay – the time it takes for a packet to travel between client 

and server, measured as round trip time
○ Application Delay – the time it takes for an application to respond to a 

request. This is measured between the application process receiving a 
message and sending a response to the local server’s network stack

○ Server Delay – the time it takes a server to transfer messages between 
the NIC and an application process

○ Client Wait Time – the client’s version of server + application delay. For 
user applications, this is usually influenced by the user interacting with 
the application



#sf23us
Capture 1: Fast Response

◉ Normal_fast_clear.pcapng
◉ Normal_fast_cipher.pcapng



#sf23us
Interlude: THE PATTERN

Payload = MSS, no PSH | client REQ
Payload < MSS, PSH | end of REQ
Payload = 0, ACK | network delay
Payload > 0 | server + app delay

If you only learn one thing from this talk, let it be this pattern



#sf23us
Capture 2: Network Latency

◉ See the following captures
○ Net_delay_clear.pcapng
○ Net_delay_cipher.pcapng



#sf23us
Capture 3: Application Latency

◉ See the following captures
○ Normal_slow_clear.pcapng
○ Normal_slow_cipher.pcapng



#sf23us

Testing Architecture –
Raspberry Pi

Switched to Raspberry Pis to reduce overall capacity of server
Switched to Apache as it does not handle load as well as nginx
Added my laptop to add load to the server without cluttering up client’s tcpdumps

Client 
Raspberry Pi 4 
Raspberry OS

Apache

GET /

GET /quick_response

GET /slow_response

mod_proxy_wsgi
Flask

Raspberry Pi 4 
Raspberry OS

Attacker 
MacBook Air



#sf23us

Capture 4: Raspberry Pi, GET 
Flood

◉ See the following capture
○ Get_flood_fast.pcap



#sf23us
Why This Happened

R. Krishnamurthy, “A Framework for Evaluating Server Performance: Application to SIP Proxy Servers”, 2016. Available ramekris.wixsite.com/research



#sf23us
Why This Happened

R. Krishnamurthy, “A Framework for Evaluating Server Performance: Application to SIP Proxy Servers”, 2016. Available ramekris.wixsite.com/research

K_
st
ac
k

K_
so
ck
q



#sf23us
Why This Happened

R. Krishnamurthy, “A Framework for Evaluating Server Performance: Application to SIP Proxy Servers”, 2016. Available ramekris.wixsite.com/research



#sf23us
Why This Happened

R. Krishnamurthy, “A Framework for Evaluating Server Performance: Application to SIP Proxy Servers”, 2016. Available ramekris.wixsite.com/research

When an application is busy, it can take a long time for the kernel to get the application to pull a 
message from the socket buffer



#sf23us

Capture 5: Raspberry Pi, SYN 
Flood

◉ See the following capture
○ Syn_flood_fast.pcap



#sf23us
Why This Happened

◉ To get a packet to the kernel, the NIC must send a soft interrupt to 
the CPU

◉ The process that handles that interrupt is ksoftirqd. Ksoftirqd calls 
netif_receive_skb()



#sf23us
Why This Happened

This is from the top command on the server during the SYN flood



#sf23us

Applications – Three Tier 
Application

Web Server

Middleware 
Layer 

App Server 
OR 

Microservices

Database

Client

Packet captures from a given layer let us perform latency analysis on both sides of that layer.



#sf23us
Applications – Internet Facing

Web Server
Middleware 

Layer 

App Server 
OR 

Microservices

DatabaseClient Firewall FirewallWeb Server
Web Server

Reverse 
Proxy

Internet

In a modern internet-facing application, any one of these devices can be causing latency, including devices 
deployed as appliances. Getting packet captures at multiple layers is critical to isolating a problematic layer.



#sf23us
Applications – CDN Fronted

Web Server

Middleware 
Layer 

App Server 
OR 

Microservices

DatabaseClient Firewall FirewallWeb Server
Web Server

Reverse 
Proxy

Internet
CDN 

Forwarding 
Node

Internet
CDN 
Edge 
Node

With a CDN in the mix, it’s difficult to determine any latency at the client. Because CDNs operate at Layer 7, we 
don’t even get a good understanding of network latency.



#sf23us

Questions?


