
#sf24us#sf24us

Jaap Keuter
Wireshark core dev

Dissector Developer
Notes
Beyond the APIs

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Welcome

First some questions to get to know each other:
Who has cloned the Wireshark repository?
Who’s writing dissectors? In C or Lua?
Who’s developing on which OS?
Who has read the development documentation?

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Dissectors.
Not just the EPAN API’s, but what lies beyond them.
How do we think about packet dissection design?

What will we discuss?

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Getting our bearings

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
 void *data _U_)
{

Dissector entry point
doc/packet-PROTOABBREV.c

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Who is calling dissect_PROTOABBREV() ?
For this we need to register the dissector with EPAN.

Who’s calling?

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Dissector registration

/* Register the protocol with EPAN. */
void
proto_register_PROTOABBREV(void)
{
 proto_PROTOABBREV = proto_register_protocol("PROTONAME",
 "PROTOSHORTNAME", "PROTOFILTERNAME");

 PROTOABBREV_handle = create_dissector_handle(dissect_PROTOABBREV,
 proto_PROTOABBREV);
}

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Now that EPAN knows about dissect_PROTOABBREV()
when does it call us?
For this we need to setup dissection handoff.

Who’s calling? (2)

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

#define PROTOABBREV_UDP_PORT 10000

/* Register for handoff to the dissector. */
void
proto_reg_handoff_PROTOABBREV(void)
{
 dissector_add_uint("udp.port",
 PROTOABBREV_UDP_PORT,
 PROTOABBREV_handle);
}

Dissection handoff

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
 void *data _U_)
{

Dissector entry point (2)
doc/packet-PROTOABBREV.c

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

 *
 * Testy, Virtual(-izable) Buffer of guint8*'s
 *
 * "Testy" -- the buffer gets mad when an attempt is made to access data
 * beyond the bounds of the buffer. An exception is thrown.
 *
 * "Virtual" -- the buffer can have its own data, can use a subset of
 * the data of a backing tvbuff, or can be a composite of
 * other tvbuffs.
 *
 * Copyright (c) 2000 by Gilbert Ramirez <gram@alumni.rice.edu>
 *

Testy, Virtual Buffer

mailto:gram@alumni.rice.edu

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

WS_DLL_PUBLIC guint8
tvb_get_guint8(tvbuff_t *tvb,
 const gint offset);

Besides this there are access functions for any imaginable
data type in a TVB. Use them!

Access to packet data
epan/tvbuff.h

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
 void *data _U_)
{

Dissector entry point (3)
doc/packet-PROTOABBREV.c

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

typedef struct _packet_info {
 <insane amount of parameters>
} packet_info;

Packet info struct
epan/packet_info.h

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

typedef struct _frame_data {
 <less insane amount of parameters>
} frame_data;

Frame data struct
epan/frame_data.h

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
 void *data _U_)
{

Dissector entry point (4)
doc/packet-PROTOABBREV.c

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

WS_DLL_PUBLIC proto_item *
proto_tree_add_item(proto_tree *tree,
 int hfindex, tvbuff_t *tvb,
 const gint start, gint length,
 const guint encoding);

The protocol tree
epan/proto.h

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

static hf_register_info hf[] = {
 { &hf_FIELDABBREV,
 { "FIELDNAME", "FIELDFILTERNAME",
 FT_FIELDTYPE, FIELDDISPLAY,
 FIELDCONVERT, BITMASK,
 "FIELDDESCR", HFILL }
 }
};

Header field
epan/proto.h

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Often when creating your dissections you want to convert
a number into a representative string. But can you trust
the number read from the TVB to be valid?
Setup a value_string array and make sure to terminate
that with a {0, NULL} tuple. Then use the value_string
conversion functions, or stick it in the header field.

Converting values

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
 void *data _U_)
{

Dissector entry point (5)
doc/packet-PROTOABBREV.c

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

During dissection we want to pass out-of-band data
between dissectors. If this is not part of packet_info, then
the data parameter allows for this.
Since, in most cases, this is an unused parameter, use the
“_U_” attribute to tell the compiler to ignore it.

Out of band data

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
 void *data _U_)
{
 /* create display subtree for the protocol */
 ti = proto_tree_add_item(tree, proto_PROTOABBREV, tvb, 0, -1, ENC_NA);

Dissector entry point (6)
doc/packet-PROTOABBREV.c

#sf24us#sf24us

Dissector design considerations

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

In what order are packets dissected, i.e., in what order is
my dissector being called?
Wireshark: First sequential, then in random order.
Tshark: Once sequential, twice sequential with “-2” option.
Ergo: you can’t use static variables!

Packet dissection order

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Packets are often not dissected in isolation. They can
depend on data in earlier packets.
How to keep track of which packets belong together?
Conversations: An association defined by endpoint tuples,
e.g., side A and B: IPv4 address + UDP port#

State across packets

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

With datagram protocols (e.g., UDP) you know that you
are getting a Protocol Data Unit worth of data.
How about streaming protocols (e.g. TCP) ?
You cannot expect the TCP dissector to give you your
complete Protocol Data Units!

Streaming vs datagram

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

WS_DLL_PUBLIC void
tcp_dissect_pdus(tvbuff_t *tvb,
 packet_info *pinfo, proto_tree *tree,
 gboolean proto_desegment, guint fixed_len,
 guint (*get_pdu_len)(packet_info *,
 tvbuff_t *, int, void *),
 dissector_t dissect_pdu,
 void *dissector_data);

TCP PDU finder
epan/dissectors/packet_tcp.h

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Remember that Wireshark gets put into action when
things don’t work. That may be when there’s a protocol
error.
To help the user, always try to show as much as possible.

What to do with errors?

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Use the safety of the EPAN facilities to cover for errors,
e.g., TVB, value_string, etc.
Always check the validity of values read from the TVB
before using it for loop counts, shifts, etc. These EPAN
can’t protect you against.

What to do with errors?

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

●Columns
●Generated and hidden fields
●Per packet data
●Heuristics
●Taps and statistics
●...

What we didn’t cover

#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

●In the documentation
–Developer Guide
–doc/README.*

●In the source code

More info to be found

#sf24us

Time for Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

