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Welcome

First some questions to get to know each other:
Who has cloned the Wireshark repository?
Who’s writing dissectors? In C or Lua?
Who’s developing on which OS?
Who has read the development documentation?
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Dissectors. 
Not just the EPAN API’s, but what lies beyond them.
How do we think about packet dissection design? 

What will we discuss?
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Getting our bearings
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/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
        void *data _U_)
{

Dissector entry point
doc/packet-PROTOABBREV.c
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Who is calling dissect_PROTOABBREV() ?
For this we need to register the dissector with EPAN.

Who’s calling?
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Dissector registration

/* Register the protocol with EPAN. */
void
proto_register_PROTOABBREV(void)
{
    proto_PROTOABBREV = proto_register_protocol("PROTONAME",
        "PROTOSHORTNAME", "PROTOFILTERNAME");

    PROTOABBREV_handle = create_dissector_handle(dissect_PROTOABBREV,
        proto_PROTOABBREV);
}
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Now that EPAN knows about dissect_PROTOABBREV() 
when does it call us?
For this we need to setup dissection handoff.

Who’s calling? (2)
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#define PROTOABBREV_UDP_PORT 10000

/* Register for handoff to the dissector. */
void
proto_reg_handoff_PROTOABBREV(void)
{
    dissector_add_uint("udp.port", 
        PROTOABBREV_UDP_PORT,
        PROTOABBREV_handle);
}

Dissection handoff
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/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
        void *data _U_)
{

Dissector entry point (2)
doc/packet-PROTOABBREV.c
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 *
 * Testy, Virtual(-izable) Buffer of guint8*'s
 *
 * "Testy" -- the buffer gets mad when an attempt is made to access data
 *      beyond the bounds of the buffer. An exception is thrown.
 *
 * "Virtual" -- the buffer can have its own data, can use a subset of
 *      the data of a backing tvbuff, or can be a composite of
 *      other tvbuffs.
 *
 * Copyright (c) 2000 by Gilbert Ramirez <gram@alumni.rice.edu>
 *

Testy, Virtual Buffer

mailto:gram@alumni.rice.edu
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WS_DLL_PUBLIC guint8 
tvb_get_guint8(tvbuff_t *tvb,
    const gint offset);

Besides this there are access functions for any imaginable 
data type in a TVB. Use them!

Access to packet data
epan/tvbuff.h
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/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
        void *data _U_)
{

Dissector entry point (3)
doc/packet-PROTOABBREV.c
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typedef struct _packet_info {
   <insane amount of parameters>
} packet_info;

Packet info struct
epan/packet_info.h
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typedef struct _frame_data {
    <less insane amount of parameters>
} frame_data;

Frame data struct
epan/frame_data.h
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/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
        void *data _U_)
{

Dissector entry point (4)
doc/packet-PROTOABBREV.c
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WS_DLL_PUBLIC proto_item *
proto_tree_add_item(proto_tree *tree,
    int hfindex, tvbuff_t *tvb,
    const gint start, gint length,
    const guint encoding);

The protocol tree
epan/proto.h
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static hf_register_info hf[] = {
    { &hf_FIELDABBREV,
      { "FIELDNAME", "FIELDFILTERNAME",
        FT_FIELDTYPE, FIELDDISPLAY,
        FIELDCONVERT, BITMASK, 
        "FIELDDESCR", HFILL }
    }
};

Header field
epan/proto.h
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Often when creating your dissections you want to convert 
a number into a representative string. But can you trust 
the number read from the TVB to be valid?
Setup a value_string array and make sure to terminate 
that with a {0, NULL} tuple. Then use the value_string 
conversion functions, or stick it in the header field.

Converting values
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/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
        void *data _U_)
{

Dissector entry point (5)
doc/packet-PROTOABBREV.c
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During dissection we want to pass out-of-band data 
between dissectors. If this is not part of packet_info, then 
the data parameter allows for this.
Since, in most cases, this is an unused parameter, use the 
“_U_” attribute to tell the compiler to ignore it. 

Out of band data
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/* Code to actually dissect the packets. */
static int
dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
        void *data _U_)
{
    /* create display subtree for the protocol */
    ti = proto_tree_add_item(tree, proto_PROTOABBREV, tvb, 0, -1, ENC_NA);

Dissector entry point (6)
doc/packet-PROTOABBREV.c
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Dissector design considerations
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In what order are packets dissected, i.e., in what order is 
my dissector being called?
Wireshark: First sequential, then in random order.
Tshark: Once sequential, twice sequential with “-2” option.
Ergo: you can’t use static variables!

Packet dissection order
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Packets are often not dissected in isolation. They can 
depend on data in earlier packets.
How to keep track of which packets belong together?
Conversations: An association defined by endpoint tuples, 
e.g., side A and B: IPv4 address + UDP port#

State across packets
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With datagram protocols (e.g., UDP) you know that you 
are getting a Protocol Data Unit worth of data.
How about streaming protocols (e.g. TCP) ?
You cannot expect the TCP dissector to give you your 
complete Protocol Data Units!

Streaming vs datagram
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WS_DLL_PUBLIC void
tcp_dissect_pdus(tvbuff_t *tvb,
    packet_info *pinfo, proto_tree *tree,
    gboolean proto_desegment, guint fixed_len,
    guint (*get_pdu_len)(packet_info *,
      tvbuff_t *, int, void *),
    dissector_t dissect_pdu,
    void *dissector_data);

TCP PDU finder
epan/dissectors/packet_tcp.h
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Remember that Wireshark gets put into action when 
things don’t work. That may be when there’s a protocol 
error.
To help the user, always try to show as much as possible.

What to do with errors?



#sf24us

https://www.wireshark.org https://gitlab.com/wireshark/wireshark

Use the safety of the EPAN facilities to cover for errors, 
e.g., TVB, value_string, etc.
Always check the validity of values read from the TVB 
before using it for loop counts, shifts, etc. These EPAN 
can’t protect you against.

What to do with errors?
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●Columns
●Generated and hidden fields
●Per packet data
●Heuristics
●Taps and statistics
●...

What we didn’t cover
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●In the documentation
–Developer Guide
–doc/README.*

●In the source code

More info to be found
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Time for Q & A
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