
#sf25us

Pcap-NG Logging:

Packets and Packet-Like

Objects

Mike Kershaw

infosec.exchange/@kismetwireless || https://www.kismetwireless.net

mailto:infosec.exchange/@kismetwireless

#sf25us

Hello!

•OSS developer (Kismet and other tools)

•Engineer/Hacker @ Hak5 for embedded products

(WiFi Pineapple, Packet Squirrel, LAN Turtle, etc)

•Fairly long history in WiFi nonsense & working for

WiFi vendors

#sf25us

Logging is Everything

• Logs are often the only source of information about an

event

• Only way to time travel back and figure out what

happened during an event

• The more complete the logs, the more useful they are

• This makes our goal pretty clear:

Capture everything possible

#sf25us

What is Everything?

• All (or as close to all) transmitting devices

• But also, metadata like…

• Location

• Speed

• Temperature and humidity

• Antenna attributes

• Orientation of the capture HW (elevation, azimuth)

• Anything else we can think of!

#sf25us

How Esoteric Do You Want To Be?

#sf25us

Wouldn’t You, If You Could?

• If it were possible to capture

as much about the external

environment at the same

time as packets, wouldn’t

you?

• Factors like temperature and

humidity can be relevant

while performing diagnostics

and logging problems

• “The network goes out every

time it’s cold”

#sf25us

Traditional Pcap Format

• PCAP header

• Time (milliseconds)

• Link type (DLT)

• Packet size

• Packets

• Time (milliseconds)

• Packet content

• All packets must be the same type

• All information must be in the packet

#sf25us

PPI

• Custom headers used in pcap

• PPI tried to solve for Wi-Fi

• Wrapper header includes signal levels, GPS location

• Limited signal information

• No way to indicate multiple interfaces

• Only for Wi-Fi

#sf25us

Radiotap

• Adopted in the kernel

• Wrapper header has complex Wi-Fi signal info

• No concept of location

• Still can’t mix multiple capture types, Wi-Fi only

#sf25us

Multiple Interfaces

• Why do we care about multiple interfaces & types?

• Radio in particular shares space with other protocols

• Performance of one can be impacted by traffic on others

• In a mixed environment, ignoring one can mask

problems

#sf25us

Limits?

• How many interfaces can you put in a Pcap-NG?

• Technically unlimited…

• I know of users putting hundreds – to thousands – of

capture interfaces in a single Pcap-NG

#sf25us

#sf25us

Pcap-NG

•To solve these and other problems with Pcap, we have

Pcap-NG

•Pcap-NG is the “new” packet log format

•So “new” that it was introduced in Wireshark 1.2

•One. Point. Two.

•19 years ago.

•Obviously so new that most other tooling doesn’t use it

still and it’s still worth talking about here…

#sf25us

Reasons to Love Pcap-NG

• Extensive metadata on packets, plus ability to add

custom metadata!

• Multiple interfaces in a single capture

• Multiple link types in a single capture

• Nanosecond time

• Expandable record types

Define your own data! Custom packet data, custom

metadata

#sf25us

Drawbacks

• A lot of tools don’t support Pcap-NG still (or don’t

support it fully/properly)

• Not as simple to write as traditional pcap due to a lack

of simple interface libraries

• Not many tools write Pcap-NG formats

Wireshark, Kismet … not many others?

#sf25us

Pcap-NG Boosterism

• I think Pcap-NG is awesome

• You might too

• Way more flexible than traditional pcap logs

• More tools should use it

• Lets talk about why

#sf25us

Basic Pcap-NG Internals

• Block-based log

• Basic identifier header, followed by blocks

• Blocks can define packets, capture interfaces, custom

data, statistics, encryption information, etc

• Blocks can hold multiple info elements in the form of

options

• Turtles all the way down

#sf25us

Different Block Types

• Section Header Block (SHB)

Looks almost like a traditional PCAP header

• Interface Description Block (IDB)

Defines a capture interface, of which there may be many

• Enhanced Packet Blocks (EPB)

Captured packet, event, other data

Options – arbitrary metadata - DNS resolution, statistics,

comments, decryption info

#sf25us

Flexible Order

• Pcap-NG is a linear log – not random access

• So how do we add new content like an interface?

• Just put in another interface block before the first time

we reference it!

• Need extra metadata on a packet?

• Just add extra data! Not all packets need the same

metadata!

#sf25us

Packet Records

• Largely focused on binary packet content (but it doesn’t

have to be)

• Have a standard regular format

• Common packet types are 802.3, 802.11, etc. We have

link types for them.

• But… what else?

#sf25us

Packet-Like Objects

• Don’t have an assigned link type

• Often come from low-level / raw radio captures or

represent non-standardized content

#sf25us

Mostly Wireless

• When we say raw capture…

• I mostly mean wireless / radio

• Mainly because physically connected devices use known

standards

• CAN / RS485 / SPI / Ethernet / USB / etc

• Tons of random RF devices with no standard

#sf25us

Can’t See What You Can’t See

• You can’t inspect what you can’t see

• Many consumer devices have been invisible to tools like

Wireshark because there was no way to capture the

packets

• “Some interference on Wi-Fi” might be all we’d see

• Now cheap SDR lets us start looking (and logging) them!

#sf25us

Why No Link Type?

• Often for devices captured like this there is no standard

to help decode

• No strict packet format

• Often not even designed to be decoded by a PC

• We just happen to know how to decode instances of

them

#sf25us

Example PLO Emitters

• Wireless weather stations

• Temperature sensors

• Car TPMS sensors

• Airplane, ship, etc data (one of the closest to a fixed

format that could be worthy of a DLT)

• Power, water, gas meters

#sf25us

How do they happen?

• Packet-like data typically comes from devices which do

not, or do not need to, operate on a standard

• As an example:

• There is no standard for wireless consumer temperature

sensors

• Every company sells their own ecosystem

• It’s not Wi-Fi. It’s not Bluetooth.

• It doesn’t even need to be compatible with future versions of

the same product

#sf25us

Example Sensor

#sf25us

Packet-Like Enough

• Still, enough like a packet for us

• Identifiable, consistent source

• Sometimes an identifiable destination

• Comprehensible packet format

• Why is it hard to get a link type?

#sf25us

What is a Link Type

• Link types are basically a magic number assigned by the

libpcap team

• By policy, a link type must be associated with a standard

• Once assigned, the link type fields are meant to be fixed

• This made a lot of sense when all practical packet sources

come from traditional standard sources

• How do you define a DLT for a capture with no fixed

standard?

#sf25us

No Standards

• Manufacturer isn’t going to publish any standard about

how it works

• It only needs to talk to a paired receiver

• Often consists of tiny amounts of data (tens of bytes at

most) generated by dedicated microcontrollers

• On the other hand…

• Looks like a packet

• Quacks like a packet

#sf25us

Expandable by Design

• Fortunately, we can expand Pcap-NG: It was designed

for it!

• Packet / block records can be customized

• Metadata can be added to existing blocks as options

• New custom metadata can be defined

#sf25us

Packets + Metadata

• The combination of custom packets + options let us do

almost anything

• Log new packet types with a more flexible way to

indicate the contents

• Log extensive metadata around traditional packet types

#sf25us

Packet Block Format

• Every packet block contains:

Type

Length

Interface

Timestamp

Data

Extra flags

• Any number of options (metadata)

#sf25us

Custom Block

• One of the block types is “custom”

• This allows us to add anything we need

• We just have to play by the Pcap-NG rules…

• How can anyone add custom data without interfering

with someone else’s custom data?

#sf25us

Custom Option

• Looks a lot like a custom block (funny, that)

• Option code (ie, “Custom”)

• Length

• Content

#sf25us

Anti-Collision: PEN

• Among other duties (DNS root, IP assignment,

timezones…) the IANA will assign a PEN

• Private Enterprise Number

• Globally unique identifier

• Free to get

• Pcap-NG uses a PEN to indicate the owner of a custom

data object

• A PEN is just a simple number

• For example, the Kismet PEN is 55922

#sf25us

Custom Block

• Standard enhanced block

Type (0xBAD = Custom)

Length

PEN number

Arbitrary custom data

• Options – both standard and custom!

#sf25us

Poison PEN

• Not everything is perfect, unfortunately

• The PEN is a top-level identifier which indicates the

custom ID of a block or option

• That gives one block and one option per PEN

• You’ll probably want to be able to use multiple types in

your organization.

• This means we need to design the data payload to allow

for this!

#sf25us

Ways to Encode Data

Multiple ways to encode our data

1. Just shove it all into something like JSON

2. Binary encoded structures

#sf25us

JSON

• JSON is easy to read

• … But expensive to serialize and parse in quantity or at

speed

• Not best suited for content which is primarily binary

data

• Other possible strange encoding edge cases

• Reasonable for content that may already be in JSON, or

which is intermittent

#sf25us

Possible JSON Content

• Very simple

{“GPS”: {“lat”: 123.4567, “lon”: 45.6789}}

{“device”: “rtl433_thermometer”, ”temp_c”: 30}

#sf25us

Binary Formats

• Already used heavily (they’re what Pcap-NG is, after all)

• Efficient and fast

• Pcap-NG itself is a great example of how to structure

things

#sf25us

Reasonable Binary Layout

• Magic signature to indicate block type

• Version

• Data length

• Field presence bitmask

• Content

#sf25us

Magic Signature

• Arbitrary byte value to indicate what type of sub-record

this is

• Also used to validate that the sub-record is something

we expect

• Similar values used in Pcap and Pcap-NG

#sf25us

Versioning

• You can’t go back in time and add fields you forgot

• Even if you only think you need a single version… spend

two bytes for a version field!

• Allows for flexibility going forwards

#sf25us

Field Presence Bitmask

• Record style used by Pcap-NG, Radiotap, and others

• Simple bitfield indicates what fields are present in this

record

• Allows compressed data when only some fields are

needed

• Allows for adding fields in the future

• Doesn’t allow for replacing fields easily, plan

accordingly!

#sf25us

Binary Data Content

• Again, our best reference is how Pcap-NG defines

records

• Records can be designed as packed (unaligned) or

aligned structs of data… document which you pick!

• Alignment with optional fields can be tricky for reading,

but is simple for writing

• Alignment helps the speed of processing data

#sf25us

Alignment

• When in doubt, use aligned structs

• Binary data is generally aligned to word boundaries

• Typically aligned to 32 bit / 4-byte word boundaries

• Used in Pcap, Pcap-NG, most other protocols

#sf25us

Writing Alignment

• Easier to write aligned structs, even with dynamic fields

• Writer knows what fields it uses and can define the data

structure accordingly, pre-aligned

• Asymmetric effort to read with proper alignment

• This is OK - writing needs to be closer to real-time to

avoid dropping packets so optimize for that

#sf25us

Endian

• Multibyte values need to have a defined endian order

• Pcap-NG defines endian based on the signature magic in

the file header

• Best practice is to follow the endian order of the file

• For writing speed, Pcap-NG uses the endian of the device

writing the file, which is good advice

#sf25us

Floating Without a Paddle

• Floating point data presents a problem

• There is no standard for endian conversion of floating

point data

• Safest method is to convert them to fixed precision

values of sufficient fidelity

#sf25us

Float to Fixed

• A balance between range and precision

• At the most basic:

Pick a large number and multiply your floating point

value to get a fixed value.

Divide by the same large number to get a floating point

value on the other side.

• 123.4567 * 10000 = 1234567 as fixed point

#sf25us

Picking Precision

• Pick your floating point multiplier appropriately

• It “doesn’t matter” as long as it’s documented

• Tune based on your requirements

• Larger multipliers yield higher precision, but lower

maximum values

#sf25us

Kismet Geolocation Data

• As an example…

• The Pcap-NG standard was unable to settle on

geolocation data

• Kismet uses a custom option to put location data

derived from the PPI standard

• Fields indicated by bitfield, floats converted to fixed, etc

#sf25us

Putting it Together

#sf25us

Document!

• Ultimately whatever you decide to use will likely be fine

• As long as you document it accurately

• Accurate documentation of your custom options is the

only way they’ll be useful!

#sf25us

Tools For Writing Pcap-NG

• Currently no universal libpcap equivalent library

• Kismet implements a custom Pcap-NG logger

• Most other tools also implement custom loggers

• Programmatic access with Python Scapy library

#sf25us

Writing is Less Generic

• Being able to add extra metadata makes the packet

writer a little less generic

• Anything that doesn’t come from the packet feed itself

requires hardware to sense it

• And code to read it

• And code to integrate it into the pcap

#sf25us

Reading Pcap-NG

• Again, unfortunately, no quite universal solutions

• Any tool with libPcap can read Pcap-NG if it’s a single

link type and single source

• Wireshark, Tshark use Pcap-NG as first-class capture

format

• Support for custom Pcap-NG types is growing in

Wireshark and other tools

#sf25us

Pcap-NG Data Fetching

• Wireshark adding more internal Pcap-NG custom option

support

• This will make submitting patches for custom

processing much easier

• Pcap-NG standard options exposed under the frame.*

filters

• Larger vendors like Apple starting to adopt Pcap-NG

#sf25us

Random Comments - Processing Speed

• We referenced the speed of processing several times

• For small captures, it doesn’t matter

• For large captures, it can be significant, plan

accordingly!

• Write speed is often more important than read!

• It’s OK if it takes longer to process log

• It’s not OK to lose packets because it took too long to

write!

• It’s entirely plausible to hit ~200,000 packets per

second!

#sf25us

Feedback

#sf25us

• https://www.ietf.org/archive/id/draft-tuexen-opsawg-

pcapng-03.html#name-enhanced-packet-block

https://kismetwireless.net/docs/dev/pcapng_gps/

https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block
https://www.ietf.org/archive/id/draft-tuexen-opsawg-pcapng-03.html#name-enhanced-packet-block

	Slide 1: Pcap-NG Logging: Packets and Packet-Like Objects
	Slide 2: Hello!
	Slide 3: Logging is Everything
	Slide 4: What is Everything?
	Slide 5: How Esoteric Do You Want To Be?
	Slide 6: Wouldn’t You, If You Could?
	Slide 7: Traditional Pcap Format
	Slide 8: PPI
	Slide 9: Radiotap
	Slide 10: Multiple Interfaces
	Slide 11: Limits?
	Slide 12
	Slide 13: Pcap-NG
	Slide 14: Reasons to Love Pcap-NG
	Slide 15: Drawbacks
	Slide 16: Pcap-NG Boosterism
	Slide 17: Basic Pcap-NG Internals
	Slide 18: Different Block Types
	Slide 19: Flexible Order
	Slide 20: Packet Records
	Slide 21: Packet-Like Objects
	Slide 22: Mostly Wireless
	Slide 23: Can’t See What You Can’t See
	Slide 24: Why No Link Type?
	Slide 25: Example PLO Emitters
	Slide 26: How do they happen?
	Slide 27: Example Sensor
	Slide 28: Packet-Like Enough
	Slide 29: What is a Link Type
	Slide 30: No Standards
	Slide 31: Expandable by Design
	Slide 32: Packets + Metadata
	Slide 33: Packet Block Format
	Slide 34: Custom Block
	Slide 35: Custom Option
	Slide 36: Anti-Collision: PEN
	Slide 37: Custom Block
	Slide 38: Poison PEN
	Slide 39: Ways to Encode Data
	Slide 40: JSON
	Slide 41: Possible JSON Content
	Slide 42: Binary Formats
	Slide 43: Reasonable Binary Layout
	Slide 44: Magic Signature
	Slide 45: Versioning
	Slide 46: Field Presence Bitmask
	Slide 47: Binary Data Content
	Slide 48: Alignment
	Slide 49: Writing Alignment
	Slide 50: Endian
	Slide 51: Floating Without a Paddle
	Slide 52: Float to Fixed
	Slide 53: Picking Precision
	Slide 54: Kismet Geolocation Data
	Slide 55: Putting it Together
	Slide 56: Document!
	Slide 57: Tools For Writing Pcap-NG
	Slide 58: Writing is Less Generic
	Slide 59: Reading Pcap-NG
	Slide 60: Pcap-NG Data Fetching
	Slide 61: Random Comments - Processing Speed
	Slide 62: Feedback
	Slide 63

